A Novel Approach to Model Transcription in Humans

by
Cameron Witkowski

Supervised by: Professors Stephen Brown and Kevin Truong

April 2023

Abstract

Proteins play crucial and ubiquitous roles in nature. As I
will argue in this thesis, controlling the synthesis of proteins
is a first step to harnessing their diverse functions, enabling
treatment of critical disease and unlocking new possibilities
in biotechnology. Realizing such control over protein synthe-
sis requires a robust predictive model of gene expression and
especially, transcription. In this thesis, I critically evaluate
the current literature on modeling transcription, highlighting
the limitations of the leading two schools of thought. Then,
I present a novel approach to bridge the gap between these
schools, effectively benefiting from the ideas of both. As a de-
parture point, I preprocess and openly provide a 340-million-
example supervised dataset for use in machine learning. Then,
I design my own model trained on this dataset, compare the
results from a selection of various architectural decisions, and
offer a long list of ways these results can be improved. Fi-
nally, I openly provide all the code for this project on Github
and Google Colab, where other researchers can easily review,
challenge, and build upon my work.

Acknowledgements

I would like to express my deepest gratitude to my super-
visors, Professor Brown and Professor Truong, for their unwa-
vering guidance and support throughout this journey. Their
insightful comments and constructive criticisms have been an
invaluable compass, steering me towards success. I am truly
grateful for their mentorship.

I extend my heartfelt thanks to the Applied Protein En-
gineering Lab research group, including Teddi and Jay, for
their keen attention, valuable feedback, and engaging ques-
tions during our meetings. I am appreciative of the collabo-
rative atmosphere fostered within the group.

Special thanks goes to Ayra Thomas, whose editorial ex-
pertise and insightful feedback have been instrumental in re-
fining this work. Ayra, your astute critiques, well-informed
comments, and comprehensive guidance on effective writing
have elevated the quality of this document significantly.

[am grateful for my roommates, Saiyam Patel and Ming-
shi Chi, who have provided countless invaluable conversations,
input, and a sounding board for ideas. Their intellectual cu-
riosity and friendship have seriously enriched this experience.

I would like to express my appreciation to my Mom and
Dad, for their constant care, encouragement, and support
throughout this endeavor.

Lastly, I would like to thank Simone for engaging in stim-
ulating conversations, showing genuine interest in my work,
and for managing to put up with me through this whole pro-
cess.

i

Contents
1 Introduction

2 Background

2.1 Where do proteins come from?
2.2 Transcription
2.2.1 Structure and Direction of DNA
2.2.2 Regions of the DNA
2.3 Regulatory Mechanisms Lo
2.3.1 Core Promoter Elements
2.3.2 Transcription Factors
2.3.3 Histone Modifications
2.3.4 Other Mechanisms
3 Aims
4 Theory
4.1 Structure
4.2 Uncertainty
4.3 Model Inputs
4.3.1 DNA Sequence
4.3.2 Transcription Factor Levels
4.3.3 Histone Modifications oL
434 Conclusion.

5 Literature Review

5.1 History o
5.2 Breakdown of Approaches oL
5.2.1 The Cybernetic Paradigm
5.2.2 The Mechanistic Paradigm
5.3 Cybernetic Models
5.3.1 Information-Theory Models

il

© N O ot Ot xR W W W

-
\V)

14
14
14
16
16
17
18
19

5.3.2 Boolean Networks, 26

5.3.3 Bayesian Networks L 27
5.4 Mechanistic Models o 28
5.4.1 From Sequence Data L. 29
5.4.2 Other Inputs 30
5.5 Integrating Both Paradigms L. 31
5.6 Conclusion 33
Methods 35
6.1 Data 35
6.1.1 Level of Transcription 35
6.1.2 DNA Sequence 36
6.1.3 Transcription Factor Levels 38
6.1.4 GENCODE Annotations 41
6.1.5 Same Inputs as Outputs? 41
6.1.6 Histone Modifications 42
6.1.7 Binding Motifs 44
6.2 Parametrizationo 44
6.3 Output Distribution 45
6.4 Machine Learning Lo 48
6.4.1 Example Generation 49
6.4.2 Dataset Splits 49
6.4.3 Loss Metric 50
6.4.4 Neural Networks o 51
6.4.5 Convolutional Layer 52
6.4.6 Multiplication Layer 0L 57
6.4.7 Distance Factor o o 59
6.4.8 Pooling Schedule o 62
6.5 Computational Block 64
6.6 Overall Architecture 64
6.7 Software Tools. 66

v

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5

NumPy, SciPy, and Matplotlib
Google Colab
Google Cloud Compute

6.8 Metrics of Performance

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

7 Results

8 Discussion

8.1 Seq vs.

Negative Log Likelihood

Pearson Correlation

Seq + TF o

82 Seq+ TF vs. Seq + TF +DF
83 Seq+ TF vs. Seq + TF + Core
8.4 Seq + TF + Core vs. Seq + TF + Core + HM
8.5 Seq + Core + HM vs. Seq + Core + TF + HM

9 Next Steps

10 Data Availability

11 Code Availability

A Example Generation

B Convolutional Motif Detection Test

C Architectures Tested

71

73
73
74
74
75
76

77

80

81

89

94

97

C2 Seq + TF o o oo 98

C3 Seq+TF +DF 99
C4 Seq+ TF 4+ Core 100
Ch Seq+ TF 4+ Core + HM 101
C.6 Seq+ Core + HM 102
C.7 Seq+ TF +HM 103
Training and Plots 104
D.1 Seq . . . o o o 105
D.2 Seq+ TF e 106
D3 Seq+ TF +DF 107
D4 Seq+ TF + Core 108
D.5 Seq+ TF + Core + HMo 109
D.6 Seq+ Core + HM 110
D.7 Seq + TF + HM 111
Data Preprocessing Pipeline 112
E.1 Gene-Related Data 112
E.2 Sample-Related Data 113
E.3 JASPAR and Expression data 114

vi

List of Figures

Tt = W N =

10
11

12
13
14

15
16

17

18

19

20

21
22

An illustration of the structure and molecular components of DNA. Source: [(]
An illustration of the various regions of a gene. Source: [7]
A simplified illustration of the influence of transcription factors.
An illustration of the structure of chromatin. Source: [I1].
An illustration of the effect of one gene on another, interacting through a single
activator (a).
An illustration of the effect of one gene on another, interacting through a single
activator (b).
An illustration of the cybernetic approach to modelling gene expression. . . .
An illustration of the mechanistic approach to modelling gene expression. . .
A breakdown of the literature on modelling transcription.
A representation of the structure of the raw data from GTEx experiments.
An illustration of two cases where gene interactions through a transcription
factor generally do not occur.
An illustration of inappropriate transcription factor inputs.
An illustration of appropriate transcription factor inputs.
An illustration of the parametrized mapping from the seven cell types in his-
tone measurements to the 54 cell types in GTEx measurements.
An example probability density function output by the model.
An illustration of the calculation used to generate a feature map for a tran-
scription factor motif.o Lo
An illustration of the calculation used to generate a feature map for a core
promoter. Lo e
An illustration of the operation used to multiply transcription factors by motif

feature maps. L

An illustration of the possible influence of physical distance on gene regulation.

An illustration of the calculation of a distance factor.
An illustration of the downsampling achieved by a pooling schedule.

A schematic illustration of the pooling schedule operation.

vil

© N O ot

18

18
21
23
24
36

39
40
40

43
46

56

o7

59
61
62
63
63

23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

44

An illustration of the computational block.
An illustration of overall model architecture.
A flow diagram illustrating the example generation pipeline.
Four plots which showcase key results from training a toy model on a conjured
dataset.
A plot of predictions vs true expression values on the conjured validation set.
An illustration of the Seq architecture.,
An illustration of the Seq + TF architecture.
An illustration of the Seq + TF + DF architecture.
An illustration of the Seq + TF 4 Core architecture.
An illustration of the Seq + TF + Core + HM architecture.
An illustration of the Seq + Core + HM architecture.
An illustration of the Seq + TF 4+ HM architecture.
Training and inference plots for the Seq architecture.
Training and inference plots for the Seq + TF architecture.
Training and inference plots for the Seq + TF + DF architecture.
Training and inference plots for the Seq + TF + Core architecture.
Training and inference plots for the Seq + TF + Core + HM architecture.

Training and inference plots for the Seq + Core + HM architecture.
Training and inference plots for the Seq + TF + HM architecture.
The pipeline to gather and process data from source to final array for gene-
related data.o L
The pipeline to gather and process data from source to final array for all
sample-related data.

The pipeline to gather and process data from source to final array for expres-

sion data and JASPAR binding motifs. o000

viil

95
96
97
98
99
100
101
102
103
105
106
107
108
109
110
111

112

113

114

List of Tables

A table showcasing the final validation results from testing seven model archi-
tectures.o
A table showing the test set performance of the final model under an extended
training period.
A table comparing the Seq architecture against the Seq + TF architecture. .
A table comparing the Seq + TF architecture against the Seq + TF + DF
architecture.
A table comparing the Seq + TF architecture against the Seq + TF + Core
architecture.
A table comparing the Seq + TF + Core architecture against the Seq + TF
+ Core + HM architecture.
A table comparing the Seq + Core + HM architecture against the Seq + TF
+ Core + HM architecture. 0L

X

72

72
73

74

74

75

76

1 Introduction

Proteins are the Pandora’s box of biological life, capable of yielding remarkable benefits on
the one hand, and profound consequences on the other. Although these complex biomolecules
are crucial and ubiquitous, the diversity of their functions is often underappreciated. For in-
stance, digestion, DNA repair, cell signaling, muscle contraction, and molecular transport are
well-known processes where proteins perform integral functions; yet, these familiar examples
are greatly outnumbered by the undiscovered roles proteins play throughout nature. A com-
prehensive understanding of protein function (including the ability to reverse engineer them)
offers us the potential to unlock a vast array of possibilities, endowing humanity with ex-
traordinary power. Protein engineering, as a field, has only begun to tap into this potential,
but its accomplishments thus far provide a glimpse into a future brimming with unexplored
opportunities.

Consider the discovery by Dr. Judith Melki’s team that deletions or mutations of the
SMN1 gene—which halts stop the production of the SMN protein—causes Spinal Muscu-
lar Atrophy (a rare disorder leading to muscular atrophy, progressive paralysis, and often
death) [1]. Melki’s breakthrough led to research into gene therapies and the development of
Zolgensma, a treatment which cures the disease in infants under the age of two by introducing
a replacement SMN1 gene via the AAV9 virus [2]. Zolgensma, as an engineering triumph,
demonstrates how understanding and synthesizing a single protein in specific cells can cure
paralyzed children.

Turning attention from Spinal Muscular Atrophy to Covid-19, the SARS-CoV-2 spike
protein further demonstrates the impact of advancements in protein engineering. By studying
messenger RNA (mRNA), a molecule involved in the process of producing proteins, Katalin
Kariko and Drew Weissman’s pioneering work paved the way for breakthroughs in vaccine
development [3]. When the SARS-CoV-2 genetic sequence became available in December
2020, Moderna and BioNTech quickly harnessed this knowledge to create vaccines [3].

In essence, SARS-CoV-2 vaccines introduce a modified mRNA sequence into human cells
which instructs the cells to produce the spike protein. The presence of the spike protein
activates the body’s immune response, teaching cells to recognize and combat the virus.

SARS-CoV-2 vaccines have profoundly impacted the health of millions worldwide, further

underscoring the life-altering potential of advancing our understanding of protein synthesis.

A captivating vision unfolds: to date, the groundbreaking developments in protein engi-
neering offer an indication of proteins’ potential to benefit mankind. To this end, a mastery
of these complex biomolecules, as tools, would enable us to take advantage of their manifold
functions. As tools, proteins are far more than simple wrenches or pliers, however. Ulti-
mately, proteins are instrumental in everything that life does and is, from the first stage of
cell division, to the construction of the human body, and the ability for you, my reader, to

move your eyes across these very words.

2 Background

2.1 Where do proteins come from?

According to the central dogma of molecular biology, an organism’s genome ultimately gov-
erns the synthesis of every protein. The genome is the entire set of an organism’s DNA, which
is the same in all of the organism’s cells, and is where protein production begins. Protein
synthesis can be summarized in two major steps: (1) transcription, in which a multi-protein
complex called RNA Polymerase II (POL II) binds to the DNA of coding genes, then travels
along the gene to create mRNA, using the DNA as a template, and (2) translation, in which
ribosomes convert the mRNA sequence into a chain of amino acids, which subsequently folds
in order to form the final protein structure [1].

When a gene is producing proteins, biologists say it is ‘expressed.” Genes can exhibit
varying levels of expression, creating different amounts of proteins at different times and in
different cells. The intricate mechanisms governing gene expression involve numerous factors
interacting in complex ways, such as core promoter elements, transcription factors, histone
modifications, DNA Methylation, noncoding RNAs, post-transcriptional modifications, and
post-translational modifications. These mechanisms, discussed in section 2.3, are often re-
ferred to as ‘controlling’ or ‘regulating’ gene expression because they ensure the appropriate
amounts of proteins are produced in the correct cells and at the right times. Between the
two major steps in the process of protein synthesis, gene regulation primarily occurs at the

level of transcription.

2.2 Transcription

Transcription is the initial phase in the production of proteins, beginning when POL II binds
to the DNA sequence. During this phase, a specific segment of DNA is copied by POL II,
one base at a time, into mRNA. The conversion from genetic information stored in DNA
to the intermediate mRNA molecule provides a blueprint for the subsequent construction of
proteins [5].

The location in the DNA sequence where POL II binds and begins the transcription
process is called the ‘transcriptional start site,” or TSS for short. The direction POL II

travels is called the ‘downstream’ direction, and the opposite direction is called the ‘upstream’

direction.

2.2.1 Structure and Direction of DNA

The direction of transcription, occurring one base at a time, is determined by DNA’s molec-
ular structure. DNA is made of two linked strands of repeating units called nucleotides,
resembling a rotating ladder known as a double helix, as depicted in Figure 1. Nucleotides
consist of a sugar ring (deoxyribose), a phosphate group, and a nitrogenous base. This base
is either adenine (A), cytosine (C), guanine (G), or thymine (T), and is attached to the sugar
ring.

The ladder’s side rails, called backbones, are each composed of the sugar ring and phos-
phate group alternating in sequence. At one end of a DNA strand, called the ‘5’ end,” a
protruding phosphate is found attached to the fifth carbon of the sugar ring. At the other
end, called the ‘3’ end,” a protruding hydroxyl group is found attached to the third carbon.
The phosphate-hydroxyl orientation is maintained throughout the DNA molecule, giving it
a unilateral direction [60].

Transcription occurs in the 5’ to 3’ direction of the strand that is copied into mRNA;
therefore, the 5" to 3’ direction is the downstream direction, and the 3’ to 5’ direction is the

upstream direction.

2.2.2 Regions of the DNA

The region that exists downstream of the T'SS contains the base pairs transcribed into mRNA,
which includes both exons and introns, as depicted in Figure 2. The word ‘gene’ usually
refers exactly to this region.! Introns are sections that are removed by post-transcriptional
modifications—described in section 2.3.4—Ileaving only the exons, which are later converted
into polypeptides (chains of amino acids, which form proteins when folded), indicated by the
four stages shown in Figure 2. The total length of a gene, including its introns and exons,

ranges from a few hundred base pairs to millions.

!Occasionally, a single transcribed region may produce multiple proteins (or other functional products)
and can be considered to contain ‘multiple genes,” but this is merely a matter of definition. Going into a
deeper discussion of the various definitions is outside the scope of this document.

Deoxyribonucleic acid (DNA)

‘ : E Nitrogenous
Major groove base
Nucleotide
Thymine Adenine
H
g, H l\‘l
H.C 0 ——1----H-l N (f 3
Phosphate k) et
i lbonds Hy,?mxy'
N {
i Minor groove
-

+— Sugar

0 —+— Phosphate
| group

|
|
o L
\
s 5
Lot Phosphate

Figure 1: An illustration of the structure and molecular components of DNA. Source: [(]

® H— N+ -----
Sugar-phosphate
backbone

Conversely, the region that exists upstream of the TSS is crucial for regulating gene
expression as it contains binding sites for transcription factors. The upstream region is
further divided into the promoter and enhancer regions (although the line between them is
blurry). The promoter is shown in Figure 2, but the enhancer is located further upstream.
Both regions contain binding sites for transcription factors. Enhancers can be located several
thousand bases away from the TSS, while promoters are generally closer, often within 100
bases; however, there is no consensus on a precise border between the promoter and enhancer

regions.

2.3 Regulatory Mechanisms
2.3.1 Core Promoter Elements

Core promoter elements are vital components in the DNA sequence that enable POL II to
bind and initiate transcription effectively. These elements are specific patterns (also called
motifs), consisting of nucleotides A, C, G, and T, that serve as recognizable signals to guide
POL II towards the TSS.

These motifs not only indicate the precise location where transcription should begin but

DNA Promotor Gene

Exon Intron Exon Intron Exon Intron Exon
Pre mRNA Sa u.|.4.1.|.|.|.4.1.|.|.|.4.1.|.|.|. NNRENRRNNRNNUNNENEEE INNRRRERRRRNINRUNN &
5UTR Exon Exon Exon Exon 3UTR Poly(A) tail

PR [isivssssssccess o NIRRT NN
5 UTR | ‘ i 3 UTR Poly(A) tail

0c
{ Polypeptide

Figure 2: An illustration of the various regions of a gene. Source: [7]

also aid in the proper positioning and orienting of POL II. Core promoter elements vary in
length and complexity, and a total of thirteen have been identified for POL II thus far [3].
Not all thirteen are necessary to initiate transcription, however, and different subsets are
sufficient for different genes. By recognizing core promoter elements, POL II can accurately

and consistently begin the transcription of genetic information from DNA into mRNA.

2.3.2 Transcription Factors

Transcription factors regulate gene expression by binding to the promoter or enhancer and
affecting POL II's ability to bind and initiate transcription. Thus, as their name implies,
they are factors in transcription. Similar to POL II, transcription factors also must recognize
specific motifs in the DNA sequence in order to bind. Each transcription factor has its own
motif or set of motifs that it looks for.

While some transcription factors help recruit POL II to the T'SS (appropriately named
‘activators’) other transcription factors block such recruitment (‘repressors’). The majority
of transcription factors, however, interact with coactivators, corepressors, and each other in

complicated ways. Coactivators and corepressors are proteins or other molecules that interact

with transcription factors and affect their ability to bind to promoters or enhancers.

In the human genome, around 1,600 transcription factors have been identified thus far,
which often work together, in opposition, or in a combination of both in order to fine-tune
gene expression [J]. Because of the combinatorial explosion of potential interactions which
can occur between transcription factors, deciphering the mechanisms of these factors makes
for a complex and challenging task.

In Figure 3, a simplified representation of POL II, motifs, and transcription factors is
presented. POL II may bind to four potential genes, A, B, C, and D. The greater number
of transcription factors which bind to gene D make it more likely that this gene will be
transcribed. With a rudimentary understanding of the mechanism of transcription factors,

it is now possible to appreciate an additional layer of complexity.

Gene A Gene B

Y

|
[

1
Promoler Region TS Gene
>

[TV, OO

—
AT "rdiketo go here” T
TE] {—— L RANA Polymerase Il J "I could go here” —
T "Alithings congidered, Lk
Gene D seems best’ g
L TF2 ! ~ T “I'd like to go here”
) TE3 “etnisis the place
I - for me"
“wall, I'd like 1o go hera" 'Or hara”
—» —»
—— N e — — *
< >
Promoter Region TSS Gene
Gene C Gene D

Figure 3: A simplified illustration of the influence of transcription factors.

2.3.3 Histone Modifications

Histone modifications are another crucial gene regulatory mechanism, but to understand

them, it is necessary to first revisit the structure of DNA. The depiction of DNA in sec-

tion 2.2.1 and Figure 3 is a simplification, insofar as DNA does not appear in straight linear
pieces in eukaryotic organisms (animals, plants, and fungi). In eukaryotes, DNA instead
forms a complex, coiled structure known as chromatin, which must be understood in order
to appreciate the role that histones and histone modifications play in transcription [10].

Imagine DNA resembling a string that wraps around spools, as depicted in Figure 4.
This spool is called the octamer core, oct- meaning eight, since it is made of eight proteins
called histones. This wrapped structure is known as a nucleosome, and approximately 147
base pairs of DNA coil 1.75 times around each core. The section of DNA that connects
nucleosomes together is called linker DNA | which, importantly, is more exposed than wrapped
sections. There are five main types of histones: H1, H2A, H2B, H3, and H4. Four of these
histones—H2A, H2B, H3, and H4—form the histone octamer at the core of the nucleosome.
Each octamer contains two copies of each of these four histones. The fifth histone, H1, acts
as a linker protein, sealing the nucleosome and preventing the DNA strands from unwinding.
For a sense of scale, each base pair measures 0.34 nm along the length of the DNA, the
DNA double helix itself is about 2 nm wide, and each nucleosome is about 11 nm wide.
Collectively, histones form nucleosomes to efficiently organize and compact DNA within the
cell nucleus [11].

Nucleosomes form a tightly coiled loop in a structure called the solenoid model. The
solenoid is another helix, which contains six nucleosomes in each 360-degree turn with a
diameter of 30 nm wide, shown on the left side of Figure 4. As such, the DNA double helix
wraps around histones in a 1.75-turn helix to form nucleosomes, subsequently creating the
turns in the solenoid helix. Thus, DNA is shaped as a helix within a helix within a helix [10].

To put things in perspective, a human chromosome, made up of millions of nucleosomes,
can measure several thousand nanometers. While these numbers vary significantly, the cell
nucleus, which contains all 46 chromosomes, has a diameter of about 10,000 nm, or 10
micrometers [12]. The entire cell, on the other hand, measures roughly 50,000 nm, or 0.05
mm across. This means that a typical cell is approximately ten times smaller than a single
grain of salt. The entire cell, on the other hand, measures roughly 50,000 nm, or 0.05 mm
across; therefore, a typical cell is approximately ten times smaller than a single grain of salt.

Chromatin’s tightly coiled structure poses a challenge for transcription factors that require

access to bind to target DNA sequences. More condensed chromatin limits access to binding

& Epigenetic mark

Nucleosomes (Methyl)

Histones
% Histone tail
Chromatin

DNA

Figure 4: An illustration of the structure of chromatin. Source: [11]

sites, while more open chromatin facilitates it. Histone modifications play a crucial role in
addressing transcription factors’ challenge binding. By altering the way DNA wraps around
histones, histone modifications either create openings or reinforce barriers in the chromatin
structure, thus affecting the accessibility of DNA to transcription factors.

More specifically, histone modifications involve molecular changes to histone proteins
through the addition or removal of certain functional groups. Such changes include acetyla-
tion, which adds an acetyl group to histones; methylation, which adds a methyl group; and
phosphorylation, which adds a phosphate group. Histone modifications directly influence the
bond between histone proteins and DNA to make the DNA molecule more accessible, and
subsequently influences the ease by which transcription factors access and bind to specific
sequences. To sum up, the interplay between chromatin structure and histone modifica-
tions determines which regions of DNA are accessible to POL II and to transcription factors,

ultimately influencing the outcome of transcription and gene expression [13].

2.3.4 Other Mechanisms

In the preceding sections, I outlined transcription factors and histone modifications in detail,
as they are fundamental components of the transcription process. Still, this outline does
not offer a complete picture of transcription regulation, as numerous other elements also
contribute to gene expression.

For the sake of completeness, I will now briefly discuss DNA methylation, noncoding

RNAs, and post-transcriptional and post-translational modifications, but a more detailed
analysis of these mechanisms is outside the scope of this document. The limited focus of
this document is intended to provide a clear, easily comprehensible foundation for future
research. This structure can be built upon by other researchers by incorporating additional
factors and complexities for a more comprehensive and accurate understanding of transcrip-
tion regulation. Thus, the mechanisms that I touch on next do not appear in the model I

develop in sections 4 and 6.

DINNA Methylation DNA methylation is a crucial gene regulation mechanism that involves
the addition of methyl groups to cytosines within specific DNA sequences called CpG dinu-
cleotides. A CpG dinucleotide simply consists of a cytosine (C) base followed by a guanine
(G) base in the 5-3’ direction along the DNA strand. CpG sequences often cluster together
to form regions known as CpG islands, which are found in around 60% of gene promoters.
Methylation of CpG islands in promoter regions alters the accessibility of DNA to the tran-
scriptional machinery,? inhibiting the binding of transcription factors and other regulatory
proteins that are necessary for initiating gene transcription. DNA methylation effectively si-
lences or reduces gene expression, working in concert with other gene regulation mechanisms,

such as transcription factor binding and histone modifications to control transcription [14].

Noncoding RNAs Another important factor in the regulation of transcription and gene
expression is the influence of noncoding RNAs. Unlike mRNA, noncoding RNAs can be
produced by POL I, II, or III, and do not code for proteins. Noncoding RNAs can be thought
of as ‘leaving the protein factory early’—instead of going on to become proteins, they are
involved in a number of cellular processes, including the regulation of gene expression in
various ways.

The three main types of noncoding RNAs are microRNAs, small interfering RNAs, and
long noncoding RNAs. Each of these three types has unique functions that contribute to the
overall process of gene regulation. MicroRNAs control gene expression by binding to target

mRNAs which can lead to mRNA degradation or inhibition of protein translation. Small

2In this document and much of the literature, mechanical jargon is used to portray transcription and gene
expression processes as ‘machines’ that produce proteins (or other functional products). I call this perspective
of genes as machines the mechanistic paradigm, and it is closely reexamined in section 5.2.

10

interfering RNAs also play a role in gene silencing, primarily through a process called RNA
interference. Long noncoding RNAs are more diverse in function, participating in processes

including transcriptional and post-transcriptional regulation [15].

Post-Transcriptional Modifications After exploring how chromatin structure and his-
tone modifications impact transcription, another key aspect to consider is post-transcriptional
modifications. Post-transcriptional modifications occur after the transcription process and
include RNA splicing, capping, and polyadenylation, among others.

RNA splicing involves the removal of non-coding sequences (introns) and the assembly
of coding sequences (exons) to create mature mRNA. Alternative splicing generates various
mRNA transcripts from a single gene, leading to protein isoforms with distinct functions.
Isoforms are protein variants resulting from the same gene through alternative splicing [16].

Capping and polyadenylation, on the other hand, protect the mRNA molecule and assist
in its transport, stability, and translation. Besides the few examples of post-transcriptional

modifications presented here, many more forms exist [17].

Post-Translational Modifications After mentioning post-transcriptional modifications,
it’s essential to mention another crucial aspect of gene regulation: post-translational mod-
ifications. These modifications happen after the translation process, altering the structure
and function of proteins. Events such as phosphorylation and ubiquitination are common
examples of post-translational modifications.

Phosphorylation, the most common, involves the addition of a phosphate group to a
protein, often leading to changes in its activity or interaction with other molecules. As a
result, phosphorylation plays an important role in the regulation of many cellular processes.
Ubiquitination, on the other hand, involves attaching a small protein called ubiquitin to
a target protein, typically marking it for degradation by the proteasome—a sophisticated
protein complex with the job of decomposing marked proteins. These are just two examples

of post-translational modifications, but there are many more types [15].

11

3 Aims

The primary goal of this document is to develop a predictive mathematical model for tran-
scription. Generally speaking, a model serves as a simplified representation of a complex
phenomenon or system, with the purpose of facilitating understanding, analysis, or pre-
diction of its behavior. Models are often just informal or abstract representations used as
thinking aids. Such aids include descriptions, pictures, diagrams, conceptual frameworks,
and qualitative narratives. These informal representations provide valuable starting points
for comprehending complex systems but lack the rigor, quantitative precision, and predictive
power that can be achieved through mathematical models.

In the present context of modeling transcription, the focus is on creating precise, math-
ematical models rather than informal descriptive or visual representations. By developing a
mathematical model, the intricate processes of transcription obtain a structured, numerical
representation. In this way, a richer understanding of the underlying mechanisms can be
achieved, and accurate predictions about gene expression can be made.

The decision to develop a predictive model of transcription is motivated by several fac-
tors. First, predictive models are well-defined, with clearly specified inputs and outputs,
allowing for the factors that influence transcription to be accounted for systematically. Sec-
ond, predictive models can be easily tested and validated by comparing their predictions
against experimental data, allowing researchers to assess their models and refine them as
needed. This iterative process of testing and refinement ultimately leads to more reliable
and informative models. Third, predictions made by these models have practical utility, as
they can guide experimental design, inform the development of targeted therapies, or help
identify novel gene regulatory mechanisms or transcription factors.

The greatest benefit of a predictive model, however, is that it is relatively straightforward,
in principle, to transform it into a generative model. Instead of predicting outcomes, genera-
tive models enable the creation of new data. In the case of transcription, a generative model
could be used to create synthetic promoter DNA sequences with desired cell-specific expres-
sion levels by identifying key transcription factors and manipulating binding sites within the
promoter DNA sequence. The predictive model can then verify that these synthetic promot-

ers will, in theory, have the desired expression levels. Although this process is complex and

12

challenging in practice, the comprehensive understanding provided by a precise mathematical
model could reshape what is possible.

If one needs any further convincing of the principle that predictive models can be trans-
formed into generative ones, they need look no further than the recent success of ChatGPT.
This groundbreaking technology developed by OpenAl has engaged millions with its unprece-
dented ability to intelligently generate text in response to user prompts. Despite its extensive
capacity for content creation, ChatGPT is powered, at its core, by a model of language which
does nothing but predict the next word (or token) to appear in a sequence. [19].

Thus, the design of a precise, predictive model of transcription is a necessary step in
deepening our understanding of proteins, and would represent small but tangible progress
toward mastery over proteins as tools. The next section will develop the theory necessary to

design such a model.

13

4 Theory

4.1 Structure

At the highest level of abstraction, we wish for our model to take a set of inputs, x, and
output a prediction of the corresponding level of transcription, ¥,.eq, Wwhich should closely
align with the true level of transcription, ..., measured through biological experiments. In

mathematical notation:

Ypred = f(.il?) T,y Ytrue € X (1)

where f represents a mapping from model inputs to output, x is the input data for one
prediction, y,,.q is a numeric estimate of the level of transcription, ¥, is the true numeric
value of the level of transcription, and X is the dataset, from which the inputs and the true,
experimentally measured output is drawn.

Ideally, the ‘level of transcription’ should represent the absolute frequency® of POL II
binding to the TSS and initiating transcription. The frequency of transcription can be
thought of as a measure of gene expression, since a greater transcription frequency corre-
sponds to greater mRNA production and protein synthesis. The data and units of measure-

ment for the level of transcription will be described in section 6.1.1.

4.2 Uncertainty

We now wish to extend the model in Equation 1 by incorporating uncertainty, enabling
predictions to be made with varying degrees of confidence. Incorporating uncertainty not
only indicates when predictions can be relied upon but also allows us to identify instances of
significant uncertainty, enabling further refinement and iterative enhancement of the model’s
performance.

In Equation 1, the model only outputs a single value, such as “the level of transcription

3Here, the word absolute is used to indicate that this frequency is not measured relative to other genes
or other cell types, but reflects the actual number of transcriptional events per unit of time.

14

will be 27,7 representing its best guess for the transcription level; however, this approach
doesn’t capture the uncertainty or confidence in that prediction, nor the likelihood of any
other outcomes.

To address this, we must modify our model’s output. Instead of providing a single point
estimate, the model will output a probability density function, which maps a different like-
lihood to every possible level of transcription. To simplify matters, we will assume that the
level of transcription is continuous and can take on any value from 0 to infinity. In section 6.3,
I will describe the particular type of probability distribution used.

By integrating this probability density function, we can obtain probabilities of the level
of transcription being within any range. Such probabilities might look like: “there’s a 20%
chance of the level of transcription being between 0 and 20, a 30% chance of it being between
20 and 100, and a 50% chance of it being greater than 100.” In this way, the probability
distribution contains more information than the point estimate. A point estimate can still be
recovered from the distribution, however, simply by taking the distribution’s mean, median,
or mode.

Specifically, the probability distribution will be a conditional probability distribution

given the model’s inputs x. In mathematical notation:

P(ypred | {23') = f(ypred; $) T,y Ytrue € X (2>

where f now represents a mapping from model inputs to probability density functions.
Now, in contrast to Equation 1, y,.eq is essentially another input to our model. You can
think about it like this: we may now ask our model the likelihood of any particular level of
transcription from 0 to oo, and we specify this by setting yp..q to that level. Thus, ypreq €
[0,00). Since P is a probability distribution, we must also have fooo P(Ypred |) dyprea =
1. Thus, Equation 2 forms the most abstract representation of our predictive model of

transcription.

15

4.3 Model Inputs

Having considered the model’s outputs, I now turn attention to its inputs. The background
provided in the section 2 lays the foundation for this discussion. The selection of inputs not
only marks a divide in the literature but also signifies a fundamental difference in perspectives
on transcription which will be explored further in section 5.2.

The rationale behind these inputs is the core essence of this work, representing its primary
contribution to the field of research on transcription. In an original manner, this work bridges
the gap between the two divergent schools of thought discussed in section 5.2.

The inputs given to our model constitute the information that it will base its predictions
on. For our model to bear any significant precision, this information must include all the
different factors which are known to influence transcription, as elaborated in section 2.3. If
any important factor is missing, the model will not have enough information to decide on a

level of transcription with confidence.

4.3.1 DNA Sequence

The first critical factor, necessary for transcription to occur, is the binding of POL II to a
specific region of the DNA sequence. Recall from section 2.3.1 that POL II binds by the
recognition of core promoter elements near the TSS.

A second crucial factor is the binding of transcription factors to motifs along the DNA
sequence. Recall that motifs are specific patterns (of A, C, G, and T) in the DNA, similar
to core promoter elements but appearing all throughout the promoter and enhancer regions.

The commonality between these two factors is the DNA sequence—specifically near the
TSS and throughout the promoter and enhancer regions. Thus, the simplest and most natural
way to inform our model about potential binding sites is to give it the DNA sequence. The
model will then bear the responsibility of searching for the patterns relevant to POL II and
transcription factors and using these in its predictions. The particular representation I use

will be explained in section 6.1.2.

16

4.3.2 Transcription Factor Levels

Understanding the potential binding sites of transcription factors on the DNA sequence is
insufficient for predicting transcription; it is also necessary to identify which transcription
factors are actually there. For a transcription factor to bind to the promoter or enhancer of
some gene and affect transcription, it needs to actually be in the cell nucleus at that moment.

There is more than just one copy of each transcription factor in each cell, however. Mul-
tiple copies of these factors exist, and their presence in the cell nucleus can be measured by
their concentration. The concentration of transcription factors in the cell nucleus influences
their likelihood of binding to promoters & enhancers. Certainly, transcription factors with a
concentration of zero will exhibit zero binding. Transcription factors with a high concentra-
tion, on the other hand, often bind to promoters & enhancers with high frequency. Between
these two extremes, one would reasonably expect that, all else equal, transcription factors
with higher concentrations will more frequently bind and exert a more significant effect on
transcription.

The upshot is that transcription factor concentrations are critical to include in our model’s
inputs. Ideally, we would give the model accurate measurements of these concentrations for
all 1,600 or so transcription factors simultaneously, and specifically within the cell where the
model is predicting transcription levels. This precise synchronization and location specificity
are crucial to ensure that the model’s predictions accurately reflect the intricate and dynamic
interplay of transcription factors that govern gene expression.

In order to satisfy this strict synchronization requirement, it is essential to recognize
that transcription factors, as proteins, are created by the very same transcriptional and
translational machinery under examination. Consequently, we can focus on quantifying the
production of transcription factors by measuring gene expression for genes that synthesize
them, in order to estimate their concentration. This approach renders the measurements
attainable and practical, but requires the assumption that the concentration of transcription
factors is uniform throughout the cell nucleus. This approach to estimating transcription
factor concentrations is illustrated in Figures 5 and 6, where gene A produces an activator
that increases expression of gene B. In Figure 5, the low expression of gene A leads to low

expression of gene B. In Figure 6, on the other hand, the high expression of gene A leads to

17

high expression of gene B.

Low Expression Low Expression
Protein A 0
(TF) __\\ Protein B
Binds with lower frequency
Transcription + Translation \ Transcription + Translation
5 I-IT—I—-T-T-I-IT—I—-IT-I-IT-T-Et g lT_-IT_T_-I-I-I-IT—IT—I-I-I-IT-;
LN BNRRNINYNRINIRNIRINIINRTNG, AEERENNRNNRNENEENNEEERERANREN
< >
Promoter Region TSS Gene
Gene A Gene B

Figure 5: An illustration of the effect of one gene on another, interacting through a single
activator (a).

High Expression High Expression
Protein A B
) (TF) Protein B
Rictelnly Protein B
(TF))
i REoteinfe Protein B
[Pzl (TF) Protein B
) (TF)
REoteinie Protein B
(TF)
o) Binds with higher frequency . '
Transcription + Translation l Transcription + Translation
SLLLNN NN NIRRT NINTY, AEIENENNNNNNNREENREEERNEERERY
&£ 1y
< —>
Promoter Region TSS ~ Gene
Gene A Gene B

Figure 6: An illustration of the effect of one gene on another, interacting through a single
activator (b).

4.3.3 Histone Modifications

Histone modifications significantly impact gene expression, as described in section 2.3.3,
making their inclusion in our model essential. Ideally, we would obtain measurements of
histone modifications that are synchronized (in the same sense described in section 4.3.2)
and within the same cell type as other gene expression measurements. This synchronization
and location specificity are essential for accurately capturing the complex interactions that
regulate gene expression, just like with transcription factors levels.

Synchronized and cell-specific measurements of histone modifications are unavailable,

however, and unlike the case for transcription factors, no feasible workaround exists. As a

18

result, the data for histone modifications are inherently flawed, which may lead to inaccuracies
and errors in the model’s predictions. This unfortunate fact is explored in more detail in

section 6.1.6.

4.3.4 Conclusion

While the DNA sequence, transcription factor levels, and histone modifications are all crucial
inputs, they are insufficient for a comprehensive transcription model, as numerous other

factors contribute to the process.*

This document serves as a first step in introducing the
approach, aiming to provide a foundation for future research. In the future, other researchers
may be able to build upon this work, incorporating additional factors and complexity to
develop more advanced and accurate models of transcription. In this document, the scope is
intentionally limited to the initial approach for the sake of clarity and simplicity.

In section 5, which follows, I will focus on relevant research and highlight various ap-
proaches to modeling transcription, offering valuable context and insights. Reviewing the
literature will also provide an opportunity to compare the general model framework just

outlined with other researchers’ models and approaches. We will develop our model of tran-

scription further in section 6.

4In my previous work, I incorporated ENCODE candidate Cis-Regulatory Elements (cCREs) as an ad-
ditional input; however, I have chosen not to include them here. ENCODE cCREs are regions in the DNA
that display DNase I sensitivity (serving as an indicator of open chromatin structure) and are characterized
by histone modifications or the binding of CTCF (a protein involved in transcription regulation) [20]. These
cCREs serve as a more consolidated data source, providing a coarse representation of potential regulatory
influences. Since the aim of this document is to develop a comprehensive model of transcription, specifically
capturing intricate molecular interactions, using cCREs would not align with my purpose.

19

5 Literature Review

5.1 History

Before jumping straight into the latest predictive models, it is important to appreciate the
historical developments which led to the modern understanding of transcription.

Edward Lewis’s investigations into the bithorax complex in Drosophila (fruit fly) em-
bryos during the 1940s and 50s laid the foundation for understanding gene regulatory mech-
anisms [21]. Lewis’s groundwork paved the way for Jacob and Monod’s discovery of the
operon in prokaryotic E. coli [22] [23]. The operon is a cluster of genes under the control of a
single promoter that end up being translated into multiple proteins. Jacob and Monod’s find-
ings on the lactose and tryptophan operons were crucial for future research on transcriptional
regulation.

In 1964, Vincent Allfrey discovered that histone modifications played a role in tran-
scriptional control [24]. However, the most significant catalyst for research into eukaryotic
transcriptional mechanisms was the discovery of RNA Polymerase in 1960 by Charles Loe,
Audrey Stevens, and Jerard Hurwitz, along with the identification of its three forms (POL
I, 11, and IIT) [25] [20].

The discovery of POL I, II, and III led to the identification of core promoter elements and
the systematic mapping of these elements. The first gene-specific transcriptional activator in
eukaryotes was discovered in 1979 [27]. This activator does not interact with POL II directly,
which sparked a paradigm shift as direct interaction was previously thought to be the sole
mechanism.

Another critical finding was the identification of the mediator complex in 1991, which
‘mediates’ the interaction between transcription factors and POL II [28]. The role of DNA
bending proteins was also uncovered by the collaborative efforts of many, completing the
general picture of eukaryotic transcription.” Today, our understanding of transcription has
been built upon these critical breakthroughs, each discovery representing a stepping stone

towards unraveling the intricate mechanisms governing the expression of genes.

5Note, in the model I develop in section 6, neither the mediator complex nor DNA bending proteins are
accounted for, but I list these as potential areas for improvement in section 9.

20

5.2 Breakdown of Approaches

For the most part, predictive models of transcription and gene regulation in the literature
fall into two broad categories, which are necessary to explain before presenting them. I refer

to the first category as the cybernetic paradigm and the second as the mechanistic paradigm.

5.2.1 The Cybernetic Paradigm

The cybernetic paradigm consists of models which use only expression levels as input. Using
inputs in this way is justified by the discussion in section 4.3.2. By using expression levels
of one gene to predict the expression levels of other genes, these models essentially seek to
unveil the network of interactions between genes. As a result, in the literature these models
are not usually referred to as ‘predicting transcription’ or ‘predicting expression,’” but instead
called ‘gene network inferencing,” or ‘gene regulatory networks.’

Cybernetic models do not directly use any information specifically related to each gene.
As indicated in Figure 7, these models only consider how gene A tends to influence genes
B, C, etc., how gene B tends to influence genes A, C, etc., and so on and so forth. In other
words, cybernetic models construct a network showing the interactions between genes, but

do not explain the factors driving these interactions.

Gene B

-

Figure 7: An illustration of the cybernetic approach to modelling gene expression.

While the cybernetic approach seems promising on the surface, there is a serious method-
ological concern about all models in this category: based on the interaction map alone, it

is not possible to predict how a new gene would fit into this network. The key to making

21

accurate predictions in new scenarios lies in understanding the underlying mechanisms gov-
erning phenomena. When a model successfully explains these mechanisms, it demonstrates
its generality, which is a vital aspect of all scientific models. Thus, models that are not gener-
alizable do not successfully explain the mechanisms underlying phenomena. In the context of
gene regulatory networks, understanding the mechanisms governing gene regulation, such as
the interaction of transcription factors, histone modifications, etc., is essential for accurately
predicting the behavior of new genes within the network.

Gene regulatory networks, however, fail to provide this level of understanding. As a
result, they are not generalizable and only offer a superficial view of the relationships between
genes. This lack of generality and understanding of the underlying mechanisms makes gene
interaction networks incomplete and unsatisfactory tools for studying the complex processes
of transcription and gene regulation.

In the context of complex systems, the term ‘black box’ refers to a component or process
whose internal workings are unknown or ignored, with a focus solely on the relationship
between its inputs and outputs. When applied to gene regulatory networks, this means
that genes are treated as black boxes, with attention given to their interactions with other
genes while disregarding the internal processes and molecular mechanisms that govern their
behavior.

Cybernetics is a field of study that examines communication, control, and feedback within
complex systems, aiming to understand the system as a whole rather than investigating
individual components in isolation. The term ‘cybernetic’ is appropriate to describe gene
regulatory networks because they share this focus on system-level interactions and regulatory
effects. By emphasizing the interplay between genes and their influence on each other’s
expression levels, this approach mirrors the cybernetic perspective of analyzing control and
feedback loops within a system.

The cybernetic approach to understanding complex systems is rooted in the idea that
these systems can often be better understood by examining the patterns and dynamics of
their interactions, rather than dissecting individual components. In the context of gene
regulatory networks, this cybernetic approach provides valuable information about the overall
organization and dynamics of gene regulation, but it fails to capture the underlying molecular

mechanisms driving gene interactions.

22

5.2.2 The Mechanistic Paradigm

The mechanistic paradigm, on the other hand, looks inside the black box, but ignores the
broader, system-level interactions between genes. As indicated in Figure 8, presented in con-
trast to Figure 7, this paradigm consists of models which ignore the gene network and take
only gene-specific information as input, such as the local DNA sequence, histone modifica-
tions, etc. Mechanistic models are more commonly referred to as ‘predicting transcription’

or ‘predicting expression’ in the literature.

Histone
? Modifications r)

Chromatin
Accessibility

Figure 8: An illustration of the mechanistic approach to modelling gene expression.

Mechanistic models are set up for failure by not being provided the concentration or
expression level of transcription factors. Even in principle, mechanistic models cannot ex-
plain how varying concentrations of different transcription factors would affect transcription,
because they focus on static, gene-specific information.

In accordance with the cybernetic paradigm’s shortcomings, the importance of generality
for models remains crucial. A mechanistic model that cannot account for varying concentra-
tions of transcription factors lacks the generality needed to make accurate predictions in new
cell environments. Consequently, these models fail to uncover the true mechanisms underlying
transcription, providing detailed molecular insights but not a comprehensive understanding
of gene regulation.

The term ‘mechanistic’ originates from the concept of a ‘mechanism’ or ‘machine,” which

underscores the idea that these models strive to dissect and comprehend the intricate com-

23

ponents driving transcription and gene expression, similar to the parts of a machine working
together. By focusing on the specific molecular factors and their interactions, however, the
mechanistic paradigm overlooks the broader context and conditions in which the machine
operates. This is all in contrast with the cybernetic paradigm, which adopts a more holistic,
system-level perspective, treating this machinery as a black box.

Thus, the literature on modeling transcription can be divided into two broad categories
according to the model’s inputs, as depicted in Figure 9. This figure also showcases relevant
categories of both mechanistic and cybernetic models that will be explored in sections 5.3
and 5.4 which follow. Although this classification is not all-encompassing and has notable
exceptions to be discussed, it serves as a helpful framework for comprehending the research

on modelling gene regulation and this work’s position within it.

Madels of transcription or gene expression as a function of some inputs

" Models using "'x._\\ - Models using gene-
P expression levels as N specific information .
input >(as input A
/ (p N\
/.» / “From histone™ Ay
Boolean Bayesian / \ moditications %, \

Networks | | Networks | / | L V4)
| Ainfarmation’, (\ |
| Theory | Differential |
|\ Models / Equations \)

/" From | |
A DNAse-Seq | f

. g I'. .,

\ Monlinear | | Stochastic _.. ~ /\
\ \MMEDLS N\
AN N7 From

h : Y sequence

\\ Linear /\

/
. ~ ™~
. - <&
Cybernetic Paradigm Mechanistic Paradigm Thiz work

Figure 9: A breakdown of the literature on modelling transcription.

5.3 Cybernetic Models

In this section, we will explore cybernetic models and their unique contributions to the study
of transcription. By adopting a more holistic, system-level perspective, these models provide
valuable insights into the complex interplay between genes. A brief selection of particular
models will now be described, but a more complete review is given by Hecker et al. and
more currently by Banf and Rhee [29][30]. We will discuss key examples and methodologies

within the cybernetic paradigm, highlighting their advantages and limitations in modelling

24

gene expression.

5.3.1 Information-Theory Models

The simplest cybernetic models are information-theory models, which utilize concepts from
information theory, a field of study focused on quantifying and analyzing the transmission
and processing of information. In the context of gene regulation and expression, these models
aim to identify and quantify patterns between the expression profiles of different genes. By
analyzing correlations and dependencies between gene expression profiles, information-theory
models can uncover potential functional similarities and connections between genes.

The characteristic example of an information-theory model is the correlation network [31].
Correlation networks aim to establish links between genes by identifying those with highly
correlated expression profiles. To measure these correlations, the Pearson correlation coeffi-
cient is commonly used, though other methods such as FEuclidean distance or information-
theoretic measures have also been employed [32]. The Pearson coefficient evaluates the
linear relationship between two variables, while Euclidean distance calculates the straight-
line distance between two points in multi-dimensional space. Information-theoretic measures
quantify the mutual information shared between variables, which is a measure of their de-
pendency—quantifying the amount of information one variable provides about the other.

Such correlations might be coincidental, however. To determine whether the correlated
genes truly share functional similarities, researchers often examine if these correlations persist
across different species. While not definitive proof, the presence of conserved correlations
across many stages of evolution suggests that the genes could indeed be functionally related.

While correlation networks efficiently map out gene interactions, they cannot establish
causative relationships. By utilizing asymmetric information, which considers the direc-
tionality of gene relationships, ‘influence networks’ can be formed to capture a degree of
causality [33]. Information-theory models, while simple and easy to conduct, possess inher-
ent limitations due to their static nature. Unlike the dynamic process of gene regulation,
which involves constantly changing relationships among genes, information-theory models
treat gene interactions as fixed. They capture the relationship between genes using a single
number, such as a correlation coefficient, which fails to account for the temporal changes in

regulatory networks.

25

Additionally, information-theory models only consider pairwise interactions, disregarding
the potential involvement of multiple genes in the regulation of a single target gene. As
a result, these models cannot provide a complete or accurate representation of the true

underlying biological processes at play.

5.3.2 Boolean Networks

Boolean networks, first proposed by Kauffman in 1969, are another class of cybernetic models
that offer a more dynamic approach to understanding gene regulation [31]. Boolean networks
are designed to capture the combinatorial nature of transcription regulation, which in this
context refers to the idea that different combinations of transcription factors can lead to dis-
tinct changes in the expression of a target gene. Unlike information-theory models, Boolean
networks represent each gene in either an ‘on’ or ‘off” state, thus simplifying the complexity
of gene regulation.

In Boolean networks, the state of each gene is modeled by a logic function that depends
on the states of other genes it interacts with. A logic function is a mathematical operation
that takes binary inputs (true or false, or in this context, on or off) and produces a binary
output based on specific rules, such as AND, OR, and NOT operations.

Boolean networks, by representing gene expression data in only two states (on or off),
sacrifice some of the information present in continuous expression data. This simplification,
however, offers an advantage in terms of interpretability, as it allows for a more accessible
understanding of the complex gene interactions involved in transcription regulation.

Boolean networks offer a key advantage in representing the dynamic nature of gene reg-
ulation. By simplifying gene expression into on and off states and using logical functions to
define regulatory relationships, these networks can effectively track and model state transi-
tions over time. This captures the dynamic gene regulation process and various outcomes
from different transcription factor combinations. Researchers like Thomas and Martin et
al. have shown the success of this approach in depicting temporal changes in regulatory
networks [35][30].

Modeling regulatory networks as systems of ordinary differential equations offers a more
powerful, quantitative method for capturing the feedback dynamics inherent in gene reg-

ulation. Ordinary differential equations (ODEs) are mathematical equations that describe

26

the relationship between a function and its derivatives, representing how a variable changes
with respect to other variables, typically including time. In the context of gene regulation,
ODEs can model how the expression level of a gene changes based on the influence of certain
regulatory factors and the complex interactions between them.

Both linear and nonlinear ODE models have been proposed to describe the relationships
between genes and their regulators mathematically [37][38]. By explicitly incorporating time
into the equations, ODEs are able to capture the dynamic nature of gene regulation, with
the derivatives representing the rates of change of gene expression levels over time.

Some researchers have also utilized stochastic differential equations to account for the
nondeterministic nature of transcription [39]. Stochastic differential equations are similar to
ODEs but include a random component, representing the inherent variability in biological
processes like transcription.

Advanced models, like nonlinear and stochastic differential equations, boast high repre-
sentational capacities—meaning they can represent highly complex relationships—but often
suffer from being underdetermined. The term ‘underdetermined’ refers to a situation where
there is not enough data to uniquely determine all the parameters within the model, compa-
rable to fitting a line to a single point or a quadratic function to only two points. To overcome
this challenge, researchers typically constrain the problem, introduce a priori knowledge, or
focus on small subsets of the genome (5-10 genes) at a time. A popular approach in this do-
main is the S-system model, which shares these limitations but provides innovative methods

for parameter optimization. [10].

5.3.3 Bayesian Networks

Bayesian networks are a powerful tool for modeling complex relationships between variables,
such as gene expression levels, while taking into account the uncertainty in the relationships.
They are built on the principles of probability, allowing the likelihood of certain events or
interactions to be incorporated.

In a Bayesian network, each gene is represented as a node within a graph. The connec-
tions between these nodes are directed, meaning they have a specific direction indicating the
influence one gene has on another. These connections form a directed acyclic graph, which

means that the connections never form a loop and always flow in one direction.

27

The key idea behind Bayesian networks is conditional independence. This means that,
given the information about the genes that directly influence a particular gene (parent nodes
in the graph), that gene is considered to be independent of all other genes not directly or
indirectly influenced by it (non-descendent nodes in the graph). This allows us to simplify the
complex relationships between genes and focus on the most important direct interactions.
By representing gene interactions in this way, Bayesian networks provide a framework for
modeling the probabilistic nature of gene expression and the causal relationships between
genes.

One limitation of Bayesian networks is that the requirement for the graph to be acyclic
prevents the representation of feedback loops, which are often present in gene regulatory
systems. However, researchers have developed dynamic Bayesian networks to address this
challenge, allowing for the incorporation of feedback loops and temporal changes. For exam-
ple, Rangel et al. created a 39-gene state space model, a type of dynamic Bayesian network
model, effectively capturing feedback dynamics probabilistically [41].

To reiterate, cybernetic models aim to reveal the overall network of interactions among
genes by examining relationships between gene expression levels. Although the cybernetic
approach provides valuable insights into the control and feedback loops in complex systems,
it falls short in capturing the underlying molecular mechanisms driving these interactions,
limiting its generality. As a result, despite its contributions to understanding gene regula-
tion processes, the cybernetic approach remains an incomplete and unsatisfactory tool for

comprehensively studying transcription and gene regulation.

5.4 Mechanistic Models

The mechanistic paradigm, on the other hand, examines the ‘black box’ of transcription
while overlooking broader gene interactions. Mechanistic models concentrate on gene-specific
information like local DNA sequences and histone modifications, enabling them to capture
molecular mechanisms driving transcription. However, by ignoring dynamic cellular changes,
such as varying transcription factor levels, there is a tight limit to their generality and capacity

to make predictions in new scenarios.

28

5.4.1 From Sequence Data

The most straightforward mechanistic models are those which use DNA sequence data as
input. The relevance of the DNA sequence to transcription is supported by the discussion
is section 4.3.1. A primary consideration is the presence of binding motifs for transcription
factors in the promoter and enhancer regions.

To predict transcription, then, an immediate idea is to start by simply searching for these
motifs, and the classic paper by Beer and Tavazoie does just this while studying yeast. These
authors looked for motifs in the 800 base-pair upstream region that were shared between
genes with similar expression patterns. The thinking here is that such motifs are a potential
causal factor for the common expression pattern. Next, Beer and Tavazoie used a Bayesian
Network® which takes these motifs as input and outputs the probability of a particular
expression pattern [12].

Yuan et. al. improved upon this approach by training a naive Bayes classifier, which
is a greatly simplified form of Bayesian network. Naive Bayes classifiers make the strong
assumption that inputs are independent, earning the ‘Naive’ label and significantly reducing
the model complexity. Yuan et. al., with their simpler model, achieved superior results
to Beer and Tavazoie, further demonstrating the predictive value of transcription factor
motifs [13].

Besides searching for motifs, there is another way to consider DNA as input which views
the entire activity of an organism, including the synthesis of every protein, as a product of
the exact configuration of its DNA. This perspective considers DNA as the blueprint for the
whole organism, with all possible measurable cellular phenomena being derived from this
genetic information. These phenomena include gene expression, histone modifications, DNA
methylation, transcription factor binding, and more. The ambitious goal of some cutting-edge
models is to read and interpret this complex blueprint directly from the DNA sequence.

To achieve this, researchers apply machine learning techniques, which involve developing
algorithms that allow computers to learn and make predictions from data without explicit
programming. Machine learning is particularly helpful in this task, as it can identify patterns

and relationships within complex, high-dimensional data sets, such as DNA sequences.

Tn contrast to the cybernetic Bayes nets which take expression levels as input.

29

A landmark paper introduced a model called Basenji, which takes as input a 131,000
base-pair DNA sequence centered on some TSS and predicts 4,429 distinct genomic tracks
in that DNA region [14]. A ‘track’ is the name given to a certain measurement repeated at
every location along the entire genome. Various tracks include histone modifications, DNA
methylation, and expression levels from various sources and cell types. To predict so many
of these tracks, Basenji employs dilated convolutional layers, which are specialized neural
network layers that enable efficient processing of spatially structured data.

Subsequent improvements to the Basenji approach were achieved by integrating data from
the mouse genome [15]. The most notable results were obtained by a team from DeepMind,
led by Ziga Avsec, who utilized the transformer architecture [16]. Transformers are a type
of neural network architecture that excel in handling sequences of data, making them par-
ticularly suitable for analyzing DNA sequences. This approach significantly enhanced the
prediction accuracy of gene expression and other cellular phenomena, showcasing the poten-
tial of machine learning and further demonstrating the importance of the DNA sequence in

predicting expression or transcription.

5.4.2 Other Inputs

Besides sequence data, a variety of other factors relating to the gene/promoter have been used
to predict expression. One established approach is to use measured histone modifications as
a model input [17]. The importance of histone modifications as an input was established
by the discussion in section 4.3.3. One noteworthy model based on histone modifications
is called DeepChrome, developed by Singh et. al, and uses machine learning to make its
predictions [18]. Another method in predicting transcription involves the use of DNAse
sensitivity data as input. To better understand this approach, it is essential to clarify some
underlying concepts. Deoxyribonuclease I (DNAse I) is an enzyme that selectively cleaves
DNA molecules at regions that are more accessible and less tightly wound around histone
proteins. These regions are referred to as having high DNAse sensitivity. So, in other words,
DNAse sensitivity may be thought of as a more direct measurement of DNA accessibility
than even histone modifications. When compared with using only the DNA sequence near
the TSS as input, Natarajan et. al. found that also including DNAse sensitivity as input

yielded improvements in predictions [19].

30

While the methods discussed here, including the use of DNA sequence data, histone
modifications, and DNAse sensitivity represent some prominent approaches to predicting
transcription, it is important to note that there are even more techniques employed in the
field. Two further inputs employed by researchers are investigating DNA methylation pat-
terns and measuring transcription factor binding sites directly [50][51][52][53]. For the sake
of brevity, we have only touched on a few examples, but any factor affecting expression,
including all those discussed in section 2.3, is theoretically valid to include as input.

To summarize, mechanistic models aim to unravel the inner workings of transcription
and gene regulation by focusing on gene-specific information, such as local DNA sequence
and histone modifications. While these models provide valuable molecular insights, they
fail to consider the broader, system-level interactions among genes and the dynamic changes
in cellular context, such as varying levels of transcription factors. This fact places a stark
limitation on the generality and overall predictive power of mechanistic models in new cell
environments. Therefore, despite their contributions to our understanding of regulatory
machinery, mechanistic models are an incomplete and insufficient tool for a comprehensive

predictive model of transcription.

5.5 Integrating Both Paradigms

The preceding sections have explored models from both the cybernetic and mechanistic
paradigms in the study of gene regulation. However, a small body of literature seeks to com-
bine elements of both paradigms to create a more comprehensive model. The key advantage
of this integrated approach lies in the ability to consider both the system-level interactions
between genes and the specific molecular factors driving gene regulation, which enables the
model to capture the complex interplay of processes governing gene expression.

The majority of integrated models are called ‘thermodynamic models,” because they oper-
ate under the assumption that the binding reactions between transcription factors and DNA
sequence motifs are in thermodynamic equilibrium. Utilizing this assumption, the models
first search promoter and enhancer regions for transcription factor motifs. Once identified,
they compute all possible combinations of transcription factors that can bind to the pro-

moter, taking into account that two factors cannot bind on top of each other. By integrating

31

the effects of each different transcription factor, and averaging across all combinations, the
models generate a final expression prediction.

He et. al. provide a comprehensive overview of the thermodynamic approach, discussing
the advantages, limitations, and implementations by other researchers, then introduce their
own model to predict expression levels in Drosophila embryos [51]. The majority of these
thermodynamic models focus on Drosophila, primarily due to data availability and ease
of analysis. A significant challenge in the research is obtaining high-quality measurements
of transcription factor concentrations. However, in fruit fly embryos, these concentrations
can be effectively measured across the spatial dimension of the embryo, making it an ideal
system for study. Thus, rather than utilizing synchronized measurements in each cell type
(as discussed in the section 4.3.2), thermodynamic models use measurements for each region
of the embryo. In another notable study, Gertz et al. applied thermodynamic modeling to
predict expression in yeast, demonstrating the potential of this integrated approach to study
gene regulation in different organisms [55].

Another technique that combines elements of both the cybernetic and mechanistic paradigms
is motif expression decomposition, introduced by Nguyen and D’haeseleer [56]. This method
seeks to analyze the influence of each transcription factor on the expression of a specific gene
under a particular cellular context, or condition. It does so by breaking down this influence
into two key components.

First, motif strength represents the affinity between a transcription factor and its cor-
responding DNA sequence motif(s) in the gene’s promoter or enhancer regions. This value
indicates how strongly a transcription factor is attracted to or repelled by a specific DNA
sequence.

Second, transcription factor activity reflects the capacity of the transcription factor to
either enhance or suppress gene expression under the given condition. This ‘capacity’ can be
thought of as incorporating both transcription factor concentration and degree of activating
or inhibiting effect. By considering both motif strength and transcription factor activity, the
motif expression decomposition approach provides a more comprehensive understanding of
how transcription factors impact gene expression.

In Nguyen and D’haeleseer’s work, this computation is represented in matrix form as

follows:

32

E=MA, EcR™", McR™* AcRH" (3)

where E is an expression matrix containing the expression level of m genes under n
conditions, M is a condition-independent motif strength matrix of m genes for k£ motifs,
and A is a matrix of TF activity for k£ transcription factors in n conditions. This matrix
form enables modelling the expression of all genes under a set of different conditions in one
equation. By representing the relation between transcription factors and sequence motifs
as multiplicative, motif expression decomposition effectively bridges the gap between both

paradigms.

5.6 Conclusion

The models discussed above effectively integrate both the cybernetic and mechanistic paradigms
to provide a much broader understanding of gene regulation than either paradigm can on
its own. The cybernetic paradigm, which focuses on gene network inferencing, considers
the interactions between genes and their influence on one another’s expression levels. By
treating genes as black boxes, however, cybernetic models disregard the internal processes
and molecular mechanisms that govern the behavior of genes, as discussed in section 5.2.1.
Consequently, these models lack the ability to generalize to new scenarios and predict the
behavior of new genes within the network.

On the other hand, the mechanistic paradigm opens up the black box, considering gene-
specific information such as local DNA sequences and histone modifications to predict tran-
scription or expression. In doing so, however, mechanistic models overlook the broader
system-level interactions between genes and the impact of varying concentrations of tran-
scription factors. As a result, mechanistic models also lack the ability to generalize and
predict expression in new cell environments, as discussed in section 5.2.2.

By incorporating transcription factor activities or concentrations with specific motifs
along the promoter sequence, models that combine both paradigms offer an explanatory

capacity unmatched by others. These integrated models effectively balance the system-level

33

interaction between genes with the actual molecular mechanisms by which transcription oc-
curs. In doing so, these models are capable of capturing the relative importance of each
transcription factor and sequence element for expression in every different cell context.

The deeper level of understanding provided by integrated models is not just a nice plus.
It is truly the only path forward to achieving the aims of section 3. To reiterate, a major
step toward harnessing proteins as tools is controlling their synthesis. Our bodies control
the production of proteins largely using promoters & enhancers, so, in theory, it should be
possible for us to do the same by designing synthetic promoters & enhancers. Attaining
any understanding of how these designed sequences will actually operate in cells requires a
predictive model that can handle new genes in new cell contexts. This degree of generality
is missing from both cybernetic and mechanistic models, and can only be achieved by an
integrated approach.

Despite the necessity of combining these paradigms, the literature is absent of any inte-
grated models of transcription in humans, to the best of my knowledge and research. This
absence highlights an unexplored territory within the field of gene regulation research, pre-
senting fertile ground for new investigations. This document attempts to take a first step

into this new territory, carving a path for others to follow.

34

6 Methods

The development of the model in section 4 was entirely abstract. In this section, we will
continue with this development, focusing now on concrete details and the model’s implemen-

tation.

6.1 Data
6.1.1 Level of Transcription

Picking up where section 4 left off, we currently have a model that takes as inputs the
DNA sequence, transcription factor levels, and histone modifications, and outputs a proba-
bility distribution over different levels of transcription. This abstract model is represented in
mathematical form in Equation 2.

Throughout all previous sections and until now, no distinction was made between ‘ex-
pression level,” and ‘level of transcription’ for the following reason. Ideally, we wish for our
model to predict the "level of transcription,” which should reflect the absolute frequency
of POL II binding to the TSS and initiating transcription. However, direct measurements
of this frequency are unavailable, so measurements of mRNA abundance are used instead.
Such measurements can be obtained at enormous scale from RNA sequencing experiments
(RNA-seq), making them highly suitable for analysis.

Since mRNA is produced by transcription, the abundance of mRNA is a reasonable
measure of the frequency of transcription. ‘Gene expression’ is a somewhat vague term en-
compassing the degree of a gene’s activity, production of RNA, or production of proteins. As
such, measurements of mRNA abundance are usually called measurements of gene expres-
sion in the literature. In other words, transcription frequencies (which we desire ideally) are
approximated by widely available measurements of gene expression. Thus, we will have our
model predict gene expression measurements instead of the ‘level of transcription.’

Gene expression measurements, normalized in units of transcripts per million (TPM),
allow for comparison across genes, cells, and experiments. It should be noted that there are
other units for measuring gene expression besides TPM. However, an in-depth analysis of

the exact methods of measurement and differences between these units is beyond the scope

35

of this document. A comprehensive comparison can be found in other sources [57].

Using TPM unavoidably conflates transcription with post-transcriptional modifications
and mRNA degradation, as certain mRNA transcripts have varying half-lives.” A higher con-
centration of a transcript may result from a longer half-life rather than greater transcription
levels. Despite these limitations, RNA sequencing experiments remain among the best and
most abundant sources of data for modeling transcription. If better data becomes available,
better models will be possible with greater precision and fidelity in predictions.

A respected, commonly used source of mRNA TPM data that we can use is the GTEx
dataset, obtained from the GTEx portal [58]. The subset of this dataset that we will use con-
sists of expression measurements of 19,786 coding genes, each measured 17,382 times. Each
measurement is taken from one of 54 different cell types in one of 948 different individuals.
The word ‘sample’ will be used to refer to a measurement of all genes in a single cell type in
a single individual of this dataset. Thus, one sample consists of exactly 19,786 measurements
of gene expression (one for each coding gene). The GTEx data exists in a 19,786 x 17,382

table, which resembles Figure 10.%

Gene A (TF) Gene B Gene C
John, skin cell 0.34 1293.20 5.40
John, neuron 487.92 0.00 49.83
Mary, neuron 527.93 0.29 86.92

Figure 10: A representation of the structure of the raw data from GTEx experiments.

6.1.2 DNA Sequence

As discussed in section 4.3.1, the DNA sequence is a critical input for our model. For the
sake of simplicity, I will make the assumption that all 948 individuals in GTEx experiments
have the same DNA, as the genetic makeup of any two human beings is 99.9% similar. Of

course, the differences between individuals are not insignificant, and some error will result

"Half-life is a measure of how quickly a substance degrades, decomposes, or decays.
8Note, the actual text document one might download from the GTEx portal appears as the transpose of
the table in Figure 10.

36

from making this assumption. While the unique DNA sequence data for each individual in
GTEx experiments exists, making use of this would provide only a small benefit compared
to the large effort required to process and make use of all this data. Accounting for the
influence of genetic differences on expression is one area for improvement listed in section 9.

To represent the DNA of all 948 individuals, we must select a single DNA sequence, and
for this purpose, I will use the Genome Reference Consortium Human Build 38, commonly
referred to as hg38 [59]. A reference genome serves as a standardized representation of the
genetic makeup of a species, acting as a basis for comparison and analysis in various genetic
studies. In the case of the hg38 reference genome, it is a widely accepted, comprehensive
representation of the human genome that encompasses the genetic information and structure
of a typical human being.

Naturally, it is not necessary to provide our model with the entire human reference genome
each time it needs to make a prediction. Instead, the model should only require the DNA
sequence near the gene’s T'SS, particularly the regions where transcription factors may bind
and influence transcription. Although defining regional boundaries is somewhat discretionary,
I refer to unpublished results from my research group to select 2,773 base pairs upstream
of the TSS as the cutoff for promoter and enhancer regions. To ensure the inclusion of all
core promoter elements necessary for POL II binding, I also consider downstream elements.
One core promoter element, known as the downstream promoter element, is located 28 to 32
base pairs downstream of the TSS [60]. To err on the side of caution, I will include 50 base
pairs downstream of the T'SS in our input. Consequently, the input DNA sequence for our
model will span 2,823 base pairs, extending from 2,773 base pairs upstream to 50 base pairs
downstream of the TSS.

In order to utilize the DNA sequence as input to our model, we must choose a suitable
representation. To this end, we can employ a method called one-hot encoding. In the
context of data processing, DNA sequences are considered ‘categorical’ data. Categorical
data consists of discrete categories or classes, rather than numerical values. For DNA, the
categories are the four nucleotide bases: adenine (A), cytosine (C), guanine (G), and thymine
(T).

One-hot encoding is a technique used to represent categorical data as vectors. In the

context of DNA sequences, the one-hot encoding process involves creating a separate column

37

vector for each of the nucleotides in the input sequence. Each vector has a length of 4
and contains a ‘1’ at the position corresponding to the presence of that specific nucleotide,
while the rest of the vector is filled with ‘0’s. For example, consider a short DNA sequence:

ACGTGTAC. The one-hot encoding for this sequence would be represented as follows:

A1 0 0 0 0 0 1 0
c:l0 1 0 0 0 0 0 1
(4)
G:/0O 01 0 1 0 0 0
T:/0 0 0 1 0 1 0 0

where each column represents a vector for the corresponding position in the DNA se-
quence, and the ‘1’ in each vector indicates the nucleotide at that position. In this manner,
one-hot encoding efficiently translates DNA sequences into a format that can be easily pro-

cessed by our model, enabling it to make predictions based on the provided input.

6.1.3 Transcription Factor Levels

As discussed in section 4.3.2, we can utilize gene expression measurements to estimate the
concentration of transcription factors within a cell, forming another important input. In
order to ensure that these measurements are synchronized in time and location with the
gene expression levels we want to predict, we must be cautious about their integration, as
illustrated in Figure 11 (presented in contrast to Figures 5 and 6). In the top half of Figure 11,
the black X over the arrow from the first individual to the second indicates that transcription
factors will not physically hop between people. In the bottom half of Figure 11, the black X
over the arrow from the skin cell to the neuron indicates that transcription factors will not
jump between cell types.” Therefore, we can only use the expression level of transcription

factors in the same sample as the gene whose expression we wish to predict.

9While this is conceivable to a limited extent, I would suggest that transcription factors primarily influence
expression in the cell in which they are produced.

38

O O

-J X ~)
Gene A Gene B
KX 9
Y r
Gene B

Figure 11: An illustration of two cases where gene interactions through a transcription factor
generally do not occur.

To translate this caution into a rule for selecting inputs, consider again Figure 10, and
imagine that we wish to predict the expression level of gene B in John’s neurons. According
to Figure 11, it would be inappropriate to use the expression of gene A in John’s skin, or
the expression of gene A in Mary’s neurons. Such inappropriate inputs are illustrated in
Figure 12. In this figure, a red arrow pointing from table cell x to table cell y indicates that

it is inappropriate to use z as an input when predicting y.

39

Gene A (TF) Gene B Gene C

John, skin cell 0.34S 1293.20 5.40
-
John, neuron 487.92 \\\‘ 0.00 > 49.83
—
Mary, neuron 527.93 X 0.29 3886.92

Figure 12: An illustration of inappropriate transcription factor inputs.

On the other hand, when predicting the expression level of gene B in John’s neurons, it
is perfectly appropriate to use the expression of gene A in John’s neurons. Such appropriate
inputs are illustrated in Figure 13. In this figure, a green arrow pointing from table cell x to

table cell y indicates that it is appropriate to use x as an input when predicting y.

Gene A (TF) | Gene B Gene C
John, skin cell 0.34 i 1293.20 5.40
John, neuron 487.92 i 0.00 49.83
Mary, neuron 527.93 ' 0.29 86.92

Figure 13: An illustration of appropriate transcription factor inputs.

To summarize, when predicting the expression level in some cell in the GTEx table, the
expression level of every transcription factor in the same row (the same sample) is appropriate
to include as input.

Until now we have assumed that a knowledge of which genes produce transcription factors
is given. Such knowledge, however, is imperfect, and represents another source of error in this
model. Nevertheless, a list of 2,753 potential regulatory proteins was collected by Lambert
et. al., of which around 1,600 have been labelled ‘likely transcription factor’ [9]. Among these
likely transcription factors, there are 1,072 for which binding motif(s) have been identified.
The data source for binding motifs will be described in section 6.1.7. Since the interaction
between transcription factors and the DNA sequence is critical for our model, I will use the
expression measurements of exactly 1,072 genes in the appropriate row of the GTEx table as

another input to the model, alongside the DNA sequence.

40

6.1.4 GENCODE Annotations

Lambert et. al. provides us with the names of the transcription factors, but we also need to
map these factors to their corresponding genes and align these genes with the corresponding
expression measurements found in the GTEx table. To accomplish this mapping, I use the
GENCODE release v26 annotations, which are also utilized by the GTEx dataset. GEN-
CODE is a comprehensive, high-quality gene annotation project that is part of the Encyclo-
pedia of DNA Elements (ENCODE) consortium. The ENCODE consortium is a large-scale
collaborative research project initiated by the National Human Genome Research Institute
aimed at identifying all functional elements in the human genome sequence, including genes,
regulatory elements, and other functional DNA sequences [(1].

Annotations are essential for providing a standardized and accurate description of ge-
nomic features, such as the locations, structures, and functions of genes and other functional
elements. By using GENCODE release v26 annotations, we ensure that our model is based
on a reliable and consistent labeling framework for all genes involved, aligning with the GTEx
data source we're working with. This facilitates accurate mapping of transcription factors to
their respective genes and expression measurements, which is indispensable for a model that

utilizes the expression levels of transcription factors as input.

6.1.5 Same Inputs as Outputs?

It is essential to address whether there is a methodological issue in predicting the expression
of transcription factor-producing genes while also using them as model input. One might
wonder if the model could ‘cheat’ since it already has the information it is supposed to
predict. Despite this apparent paradox, using transcription factor inputs in this manner is
still justified, as it is entirely plausible for a transcription factor to regulate the gene that
produces it, such as in a negative feedback loop. As our model predicts the expression of all
19,786 genes, there should be no strong inclination to cheat on a mere 1,072. Moreover, we
can design the model to avoid cheating, as discussed in section 6.4.6.

Still, it is principled to test whether the model is cheating, and to do this we will create
a special dataset, called the validation set, with entirely new genes the model has not seen

before. This dataset split strategy is discussed in more detail in section 6.4.2. If the model’s

41

success is solely due to cheating on transcription factor-producing genes, it will struggle to
make accurate predictions on the validation set. However, if it can make such predictions,

we can be confident in the model’s level of generalization.

6.1.6 Histone Modifications

Next I turn attention to histone modifications, another important input for our model. As
explained in section 4.3.3, measurements of histone modifications that are synchronized in
time and location (like the transcription factor levels) are unavailable. As a result, the data
for histone modifications are inherently insufficient, which contributes to inaccuracies in the
model.

Despite this limitation, we can consider data for three types of histone modifications, each
measured across seven different cell types, resulting in a total of 21 tracks. These tracks are
produced by the Bernstein Lab at the Broad Institute [62]. Tracks represent measurements
of a specific quantity (in this case histone modifications) at every position throughout the
entire human reference genome.

I will align these histone modification tracks with the DNA sequence used as input in
our model. This alignment ensures that the histone modification input incorporates mea-
surements spanning from 2,773 base pairs upstream to 50 base pairs downstream of the
transcription start site. Aligning these inputs is not only simplest but also allows for a
cohesive integration of histone modification data with the DNA sequence.

One key limitation of the histone data is that it is availabile for only seven cell types, while
our model aims to predict expression in 54 different cell types. Consequently, each time the
model makes a prediction, it must essentially determine which of the seven cell types is ‘most
similar’ to the cell type for which it is predicting expression. This calculation is approximated
by taking a unique superposition (linear combination) of all seven cell types, for each of the
54 cell types the model makes predictions on. The weights of this superposition are learned,
meaning the model can optimize this mapping to deliver the best predictions. The concept
of learned parameters is discussed in more detail in section 6.2.

The exact calculation is represented visually in Figure 14. In this diagram, the various
inputs and intermediary tensors are represented by rectangular prisms. Here, the one-hot

encoded cell type of the sample for which the model is predicting expression forms one input,

42

and the 21 histone modification tracks form another input. This calculation produces four
unique superpositions of the seven cell types, for each of the three histone modification marks.

It cannot be overemphasized how hand-wavy and overly simplified this approach is as a
solution, but something of this kind must be used to map between cell types, due to the
inherent limitation that the source data only has seven cell types. Thus, obtaining better

histone modification data in the future will lead to improved models.

4
Each row is a
superposition of the 7 cell

lines
0.1 01 0.1 0.1 01 H3K27Ac Mark
4 superpositions per mark . . . N N
are used instead of 1 3 02 |-02|-03|-03|-03 HaK4Me3 Mark
merely to widen the
channel of information 0.02 | 0.02 0 0 0 . H3K4Me1 Mark
flowing through the model
) 2,823 \
Matrix i
V mutely 7‘ i
HEMM
H1-hESC
GM1 2878
0.81 0 0 0 0 0 H3K27Ac Mark
4| |02 X 04 | 04 |04 | 04| 0 ||3 HaKAMe3 Mark
0.02 0 0 0 01 0.1 H3KdMe1 Mark
0.04 < .
2,823 . g .
Histone Modifications Input
Reshape
28

A
Y

0.81 | -0.2 | .02 | 0.04 |-0.12

1,540 trainable parameters

-
.

Cell Type Input

F

Figure 14: An illustration of the parametrized mapping from the seven cell types in histone
measurements to the 54 cell types in GTEx measurements.

43

6.1.7 Binding Motifs

To effectively predict transcription factor binding sites—critical for ultimately predicting
transcription—our model requires more than just the DNA sequence, transcription factor
levels, and histone modification data. It also needs to know the specific motif(s) to which
each transcription factor is likely to bind. Armed with this knowledge, the model can scan
the DNA sequence for these motifs, identifying possible binding sites.

To ensure the model has access to accurate binding motif data, we will use the JAS-
PAR dataset, widely recognized as one of the best resources for transcription factor binding
motifs [03]. However, it is important to note that the JASPAR data is not perfect and rep-
resents another source of error in the model. As mentioned in section 6.1.3, the intersection
between transcription factors identified by Lambert et. al. and motifs present in the JAS-
PAR dataset consists of 1,072 proteins. Consequently, our model will be designed to search
for 1,072 motifs within each promoter and enhancer sequence we provide. In addition to the
1,072 transcription factor motifs, we can also incorporate thirteen core promoter elements
from the JASPAR dataset, which serve as recognition sites for the transcription machinery,
as discussed in section 2.3.1 [4].

It’s worth noting that I don’t consider motif data as an input, even though we are indeed
‘inputting’ it into our model. This may seem paradoxical, but I treat it this way because the
data remains the same for every single prediction the model makes. Furthermore, the motifs
serve as patterns the model searches for, making them more akin to the model’s design rather
than its inputs and outputs. Think of the motifs as filters the model employs during its search
process. Instead of being treated as inputs, motifs will be represented as parameters of our

model, which will be discussed in the next section.

6.2 Parametrization

Parametrization lies at the heart of our model, as it involves assigning parameters that act as
defining characteristics or descriptors, shaping the model’s behavior and its transformation
of inputs into outputs. The model’s parameters will come in two forms: trainable and
untrainable. Trainable parameters are adjustable and updated continuously through the

training process, while untrainable parameters are set once to begin with and remain fixed.

44

The training process will be described in section 6.4.

The parametrization of the output distribution, however, is a slightly different concept
from trainable and untrainable parameters. While the model’s parameters describe its be-
havior, the parameters of the output distribution serve to define the shape of the output
distribution. The model learns to generate appropriate parameters for the output distribu-
tion based on its inputs, rather than adjusting them directly as it does with the model’s
trainable parameters. Despite this distinction, a connection between the two ideas remains:
both are descriptors, one of the model’s behavior and the other of the output distribution’s
shape.

I will denote the set of all trainable and untrainable model parameters by @, and then,

we may rewrite Equation 2 as follows:

P(ypred ‘ 3:) = f(ypred; x, @) Ty Yirue € X (5)

where f is the mapping from model inputs to probability density functions, z is the input
data for one prediction, ® is the model parameters, y,.cq € [0, 00), fooo P(Ypred |) dyprea = 1,
Yirue 1S the true gene expression level, and X is the dataset.

Having explored the model’s inputs, outputs, and data, we can now appreciate the im-
portance of parametrization. By adjusting these parameters, we refine the model behavior
and its overall ability to predict gene expression based on the given inputs, leading to better
predictions. In essence, parametrization serves as the bridge between the model’s design and

its ability to effectively utilize the provided inputs to generate accurate outputs.

6.3 Owutput Distribution

The first aspect of our model to be parametrized is the output distribution, which involves
defining a parametrized probability distribution to represent the range of possible gene ex-
pression values. A parametrized probability distribution is a mathematical function that
uses parameters to describe the shape and characteristics of the distribution. A common

example of such a distribution is the normal or Gaussian distribution, which is defined by

45

two parameters: the mean (p) and the standard deviation (o). These parameters determine
the center and spread of the distribution, respectively.

It is important to note that the parameters of the probability distribution (such as p
and o in the Gaussian distribution) are not the same as trainable or untrainable parameters.
Instead, our model will generate these parameters based on its inputs to represent its output

predictions.

Probability Density Function for true value: 22.19

0.030 1
0.025 1
0.020 1

0.015 1

P ("_lfpred:l

0.010 1

0.005 1

0.000 ~

0 50 100 150 200 250
Yored

Figure 15: An example probability density function output by the model.

In our model, I will use a combination of a negative binomial distribution and the exponen-
tial distribution to represent gene expression data. Since the negative binomial distribution
is actually a discrete probability distribution, we will instead use a continuous generalization
of the negative binomial distribution. This combined distribution has a total of four pa-
rameters: two parameters for the continuous negative binomial distribution, one parameter
for the exponential distribution, and one parameter for the relative quantities of each. In
Figure 15, an example of a probability density function output by my model is presented.
In this figure, the x-axis represents y,,.q, the predicted expression level in units of TPM, the
y-axis represents the value of the probability density function, the red x represents the mean
of the distribution, and the black dot represents ..., the value of which is stated in the plot
title. The parametrized probability density function I use is represented mathematically as

follows:

46

P(ypred) = (8) ’ NB<ypred; Tvp) + (1 - S) ’ EXP(ypred; /\) (6)

where N B is the probability density function of the continuous negative binomial dis-
tribution, EX P is the probability density function of the exponential distribution, » and p
are the two parameters of the negative binomial distribution, A is the one parameter of the
exponential distribution, and s € [0, 1] is a parameter defining the relative weight of the
exponential and negative binomial distributions.

Recall that the four parameters of the output distribution are generated by our model.

The model outputs may thus be represented as follows:

= f(xa @) Ty Ytrue € X (7)

> n Q¥ 3

where f now represents the model’s mapping from inputs to output distribution param-
eters. Finally, if we denote elements of the output vector in Equation 7 by fi, f2, f3, and f4

respectively, we may represent our model’s output calculation as:

P(Yprea | ©) = (f3) - NB(Yprea; f1. f2) + (1 = f3) - EXP(Yprea; [4) (8)

The negative binomial distribution is a suitable choice for representing gene expression
data, as it can effectively capture overdispersion, a phenomenon often observed in such
data [61][65]. Overdispersion occurs when the observed variance in the data is higher than
what would be expected under a simpler distribution, such as the Poisson distribution.

I empirically found that the combination of these two distributions allows for easier train-

ing of the model and offers greater flexibility in capturing the complex patterns and variability

47

present in gene expression data, including overdispersion. The peak of the exponential dis-
tribution is always at zero, while the continuous negative binomial distribution can shift its
peak to any location greater than zero. This allows the model to make highly uncertain,
large guesses without facing a severe penalty if y,.eq turns out to be zero. I found that the
model learns faster when the it is ‘unafraid’ to make guesses. The process of learning, or
model training, which adjusts the trainable parameters of the model to generate the output

distribution based on the input data, will be discussed in greater detail in the next section.

6.4 Machine Learning

Machine learning is centrally important to our gene expression prediction model, as it is the
process by which the model learns to adjust its parameters to best represent the underly-
ing patterns in the data. Essentially, machine learning involves iteratively fine-tuning these
parameters, usually called ‘weights,” to minimize the difference between the model’s predic-
tions and the actual gene expression values. The measure of this difference is called the ‘loss
function,” ‘loss metric,” or simply ‘loss.” One of the most common methods for achieving
this is the stochastic gradient descent algorithm (SGD), which adjusts the model’s weights
to minimize the loss.

The ‘gradient’ is a multi-dimensional derivative that represents the relationship between
the loss and the weights. In simpler terms, the gradient informs us how the prediction error
would be affected if we were to make small adjustments to each weight. Using the gradient,
SGD takes small, random steps in the direction of the steepest descent, which is the direction
that will decrease the loss fastest.

Each step is a weight update, or an adjustment of the model’s parameters fine-tuning the
model’s behavior to improve its performance in predicting gene expression. As the model
undergoes training, it gradually approaches the optimal configuration of weights. This process
is often referred to as ‘learning,” hence the phrase ‘machine learning.’

The process of machine learning, specifically using SGD, is intricately connected to
parametrization. By iteratively adjusting the weights of the model, SGD enables it to learn

from the data and generate appropriate output distribution parameters based on its inputs.'°

08pecifically, I use the Adam optimizer (8; = 0.9, 82 = 0.999,¢ = 1 x 10~7), which is a variant of SGD
with certain additional techniques that ease training. However, going into detail on the differences between

48

Updating parameters, in turn, refines the model’s ability to predict gene expression values,
leading to improved performance. Thus, machine learning and parametrization together
form the foundation for effectively transforming the abstract concept of our model into a

real, functioning system that can make accurate gene expression predictions.

6.4.1 Example Generation

To effectively harness machine learning, the model needs to be given training examples. Using
these examples, the model will learn an optimal mapping of inputs to outputs. Each example
comprises a unique combination of input features and a corresponding gene expression value.
The model will be given inputs and will make a prediction using these, then calculate a loss
value based on the difference between the prediction and the correct output. This style of
machine learning is called ‘supervised learning.’

Due to the unique nature of our input and output data, examples must be generated
for the model in a very specific way. The details of this implementation are described in

Appendix A.

6.4.2 Dataset Splits

A fundamental aspect of machine learning is dividing the dataset into training, validation,
and test splits, which ensures that the model learns from distinct sets of examples. This
separation fosters generalization, allowing the model to perform well on unseen data rather
than simply memorizing the training set patterns.

Our gene expression prediction model allocates 65,536 examples each for validation and
testing. While this deviates from the typical 80/10/10 split (80% training, 10% validation,
and 10% test), the massive dataset of 340 million examples!! renders allocating 34 million
examples for validation and testing extremely prohibitive. Despite this, the vast training data
enables effective learning and pattern capture, while validation and test sets allow reliable
model fine-tuning and evaluation.

Crucially, no gene or sample present in validation or test splits exists in the training set,

optimization algorithms is outside the scope of this document.
"UFrom the GTEx table, 19,786 genes times 17,382 samples yields a total of 343,920,252 examples across
all three dataset splits.

49

ensuring the model’s exposure to entirely unseen data during validation and testing. For
example, if the model must predict gene B in Mary’s neurons in the validation set, it will not
have seen gene B in John’s skin in the training set, nor gene A in Mary’s neurons. This data
split strategy ensures we can measure the model’s true generalization and ability to capture

the underlying mechanisms driving gene expression.

6.4.3 Loss Metric

The selection of an appropriate loss metric is a critical aspect of our model, as it forms the
precise thing that will be optimized using gradient descent. In the previous sections, we
discussed how our gene expression prediction model generates a probability distribution as
its output. With this in mind, using the negative log likelihood (NLL) as the loss metric
is a natural choice. Before diving into the rationale behind this choice, it’s important to
understand what the likelihood represents.

The likelihood is a measure of how probable it is to observe the true gene expression
levels, given the model’s predictions. Specifically, it is the value of the probability density
function when evaluated at the true gene expression levels. A higher likelihood indicates
that the model’s predictions align well with the observed gene expression data, making it a
desirable outcome. Using Equation 8, the precise formula for the negative log likelihood of

our model is as follows:

NLL = —log((fg) : NB(ytr‘ue; f17 f2) + (1 - f3) : EXP(ytrue; f4)> (9)

where, as in Equation 7, f = f(z;0), and z, Y. € X. There are several reasons for us-
ing the negative log of the likelihood instead of the likelihood itself. Logarithms offer several
advantages in this context. First, they transform products into sums, which helps numerical
stability when dealing with multiple data points, as the product of probabilities can result
in very small values. Second, logarithms simplify derivatives, making the optimization pro-
cess, such as stochastic gradient descent, more computationally efficient. Finally, logarithms

are monotonic transformations, meaning that maximizing the log likelihood is equivalent to

20

maximizing the likelihood itself. As a result, we can use the log likelihood without altering
the optimal parameter values. Finally, since it is convention to minimize the loss, we take
the negative of the log likelihood.

The negative log likelihood is widely used in machine learning because minimizing it yields
the maximum likelihood estimate (MLE) for the model’s parameters. The MLE is known to
be the best estimate for the parameters regarding its rate of convergence as the number of data
points approaches infinity [06]. Furthermore, under specific conditions, such as the true data-
generating distribution belonging to the model family and having a unique set of parameters,
the MLE converges to the true parameter values [06]. With these justifications, the negative
log likelihood serves as an intuitive and effective loss metric for our gene expression prediction

model.

6.4.4 Neural Networks

Having explored parametrization, machine learning, and the loss metric, the use of neural
network layers can now be explained. As discussed in section 2.3, transcription and gene
regulation are complex biological processes, which involve the interplay between thousands
of various molecular components. This complexity poses a challenge when developing a
predictive model for gene expression.

Neural networks, a type of artificial intelligence inspired by the structure and function of
the brain, offer a promising solution to tackle this challenge. They consist of interconnected
layers of artificial neurons or nodes that can process and learn patterns in the input data. The
power of neural networks lies in their capacity as universal function approximators, enabling
them to approximate virtually any continuous function to an arbitrary degree of accuracy [(7].
This capacity makes neural networks valuable for modeling complex, non-linear relationships,
such as those found in transcription and gene regulation.

Incorporating neural networks into our gene expression prediction model allows us to
capture the intricacies of these processes and generate accurate predictions. The model can
learn patterns and relationships among input data, including DNA sequences, transcription
factor levels, histone modifications, and other relevant factors, by leveraging the ability of
neural networks to model complex relationships.

The parametrized components of neural networks are the neural network layers, each con-

o1

sisting of numerous interconnected nodes or ‘neurons.” Neural network layers are organized
sequentially, with the output of one layer feeding into the input of the next. Typically, each
neuron receives input from multiple neurons in the previous layer, computes a weighted sum
of these inputs, adds a bias term, and applies a non-linear activation function. The trainable
parameters of the neural network are the weights and biases associated with each connection
between neurons, which are fine-tuned during the training process using techniques such as
stochastic gradient descent.

There are different types of neural network layers, each designed to serve specific purposes
in the model. In the following sections, we will discuss the various layers used in our gene

expression prediction model and their respective roles.

6.4.5 Convolutional Layer

The first thing we would like our model to do is search for motifs and core promoter elements
in the input DNA sequence, which can be accomplished with convolutional layers directly
connected to the input DNA sequence. Convolutional layers are a key type of neural network
layer designed specifically for processing and analyzing grid-like data, such as images or DNA
sequences. Convolutional layers perform a mathematical operation called convolution, which
enables the network to recognize and extract local features or patterns from the input data.

In a convolutional layer, multiple small filters or kernels slide across the input data,
computing dot products between the kernel’s weights and the corresponding input values.
Each kernel is designed to detect a specific feature or pattern, such as an edge in an image
or a motif in a DNA sequence. By applying multiple kernels, the convolutional layer can
recognize a variety of different features in the input data.

The result of the convolution operation is a set of ‘feature maps,” which are essentially
filtered versions of the input data, highlighting the presence of the detected features. These
feature maps are then passed on to subsequent layers in the neural network for further
processing and analysis. By employing convolutional layers, our model can effectively scan
the DNA input sequence for both transcription factor motifs and core promoter elements.

The inspiration to use convolutions comes from the bioinformatics technique of using
position specific scoring matrices (PSSMs) to detect sequence motifs [68][09]. Multiplying
PSSMs by a DNA sequence at a particular position, using some basic probability theory, and

52

applying Bayes rule yields the log probability of a binding event between some protein and
that position on the sequence. To demonstrate the power of this approach, and show that
it is identical to taking convolutions in a machine learning sense, the steps to construct a
PSSM, and the theory behind them, will be walked through briefly.

First, for some particular transcription factor, a position frequency matrix is constructed.
Given a set of observed binding events, the PFM contains a count of the number of each base
found at each position relative to the binding site. As an example, consider the hypothetical

position frequency matrix for protein Z, representing observations of 100 binding events:

A:T23 92 1 1 1 10
c:lov 2 o4 1 91 67

PEM=c 14y 1 3 1 5 20 (10)
T:l6 5 2 97 3 3

Here, we can readily see that an A in the 2nd position, a C in the 3rd position, etc. is
almost always observed when Z binds, while the bases at the 1st position, 6th positions are
more random. By normalizing across columns, one attains the position probability matrix in
which each element contains the conditional probability of finding that base at that position,

given a binding event:

0.23 092 0.01 0.01 0.01 0.10
027 0.02 094 0.01 091 0.67 (11)
044 0.01 0.03 0.01 0.05 0.20
0.06 0.06 0.02 097 0.03 0.03

PPM =

HQ QX

Assuming statistical independence between positions in the pattern, by multiplying the
probabilities at each position, one attains conditional probability of any sequence, given a

binding event of protein Z. For example:

23

P(CACTCG | Zping) = 0.44 x 0.92 x 0.94 x 0.97 x 0.91 x 0.20 (12)

P(CACTCG | Zyima) = 0.067 (13)

Assuming each base appears in DNA with equal probability, the probability of a base
at any particular position is 0.25. Because we assumed statistical independence between
sequence positions, we may write the probability of any given sequence as 0.25', where [is
the length of the sequence. Thus, using Bayes rule one can attain the conditional probability

of this transcription factor binding to any given sequence:

CACTCG | Zyina) P(Zyina)

P
P(Zyma | CACTCG) = 2

14
P(CACTCG) (14)
0.067 - P(Zyin
P(Zyina | CACTCG) = 5 25(6 bind) (15)

where P(Zyinq) is the global probability of Z binding to any DNA sequence, which is a
function of its binding affinity and its concentration. The concentration is another input
to the model, which as indicated in this equation, should be multiplied by the conditional
probability of binding. This multiplication will be accomplished by another layer discussed
in section 6.4.6. The binding affinity can be treated as a constant and learned by the model.

Instead of multiplying all the conditional probabilities together, they can be converted
to log probabilities and added for easier computation. Typically log base 2 is used, and the
base probability of 0.25 at each position is integrated right into the matrix. This is done by
dividing every element of the matrix by 0.25 before taking the log. These operations yield
the final PSSM:

o4

0.23 092 0.01 0.01 0.01 0.10

1 027 002 094 001 091 067
PSSM_ZOL‘J?(@' 044 001 003 00l 005 020) (16)
0.06 005 002 097 003 0.03
0.02 368 004 004 004 040
108 008 376 004 3.64 268
PSSM =log2| |1 76 004 012 004 020 0.80) (17)

0.24 020 0.08 388 0.12 0.12

—0.12 1.88 —4.64 —464 —-4.64 —1.32

0.11 —3.64 191 —464 18 1.42
PSSM = | (g0 464 —3.06 —464 -232 —0.32 (18)

—-2.06 -—-232 -3.64 1.96 -3.06 —3.06

t12 of any

With DNA sequence data represented in a one-hot encoding, the dot produc
sequence at some position with the PSSM will then yield the log conditional probability of
binding given that sequence. The only differences between this operation and convolution
is that in convolutions, 1) the PSSM is called a ‘convolutional kernel,” or ‘filter,” and 2)
the kernel is flipped along both axes. Fortunately, in most modern frameworks, such as
Tensorflow (discussed in section 6.7), the cross-correlation is used instead of convolution,
which performs the same operation without flipping the kernel.

The upshot of all this is that PSSMs, which we get directly from the JASPAR database,
can be used as untrainable convolutional kernels in our model. Thus, the first convolutional
layer of our model will effectively detect all 1,072 motifs and 13 core promoter elements,
outputting a feature map for each. In Figure 16, an illustration of the convolution calcula-
tion is presented for the SPI1 transcription factor, and in Figure 17 an illustration of the
convolution calculation for the TATA-Box core promoter element. In both of these figures,

the calculation shown is essentnially a dot product between the one-hot encoded DNA and

the PSSM. 13

2By “dot product” all is meant is an element-wise multiplication followed by summation over all elements.

13In Figures 16 and 17, the PSSMs are shown as length 6 for clarity. In the JASPAR database, however,
motifs range up to length 35 for transcription factor motifs, and length 19 for core promoter elements. In
code, motifs shorter than these max lengths are padded with zeros so that all motifs are the same length.
To understand the exact operation in code, please consult the data_jaspar_get.py file, provided through
section 11.

95

While the theoretical underpinnings of convolutions suggest their potential for motif de-
tection, there might be lingering doubts about their performance in practice. To address
these concerns and demonstrate their practical effectiveness, I conducted a test on a con-

jured dataset, with the results presented in Appendix B.

Feature Map

%/zaﬂ 9.56 h—za.? ‘ -84.0 ‘ -26.8 U

‘ 546

art®

et ®
Suﬁ‘

0 0 0 20 20 0

056 | 0 0 0 0 0

o | o ||DNA Input

0 1 0 0

0
0 0
0 /1/ 1t ol 1 1o
0 0

o
o|lo| o
=]

o

0 ‘ o | oo ‘ 0 o | 1] o ‘ 0
A 003 18 -22 20 20 -22 |Motif A
C 056 -28 -28 -3.8 -28 -0.34 <
G 042 18 19 -28 -28 | 13 &
T

22 22 -28 -28

-38 | 28
A Example: SPI1 Motif 1
e | B P Matrix Profile: MA0Q80.1

Figure 16: An illustration of the calculation used to generate a feature map for a transcription
factor motif.

26

Feature Map

.44.3 8952|122 “45.3 ‘ 128 ‘ 419 U

e |-78.24

S
ot e*"“ed

0 0 0 1.86 146 | 0O

-1.08| 0 0 0

0
0 | 56 56| 0 /e(-3.24
0

0 0 0 0

o lo | oo | 0| o0 |1 1 0/ o | o | o ||DNAInput
1 ool 1 olo]ol]o}fol]o|ol]o
0 / 1 o1 1] o0 /f(1 o0 |1 1
o] o ‘ oo o ‘ o o o] o | 1] o0 ‘ 0
A 260 186 -502 186 146 193 | |Motif 4
C -1.08 306 -3.28 -30.6 -30.6 -4.98 j’
G 243 56 | -56 -4.28 -306 -3.24 4
T 167 -1.47 194 -169 032 -3.98

e —_—

. Example: TATA-Box
. T A A A A Matrix Profile: POLO12.1
. e NSy R == ___

Figure 17: An illustration of the calculation used to generate a feature map for a core
promoter.

6.4.6 Multiplication Layer

Now that we have explained how convolutional layers can process the input DNA sequence
data to detect transcription factor motifs, we must integrate the concentrations of these
transcription factors into the model. As described in section 6.1.3, these concentrations,
measured by expression levels, are another crucial input. Our goal is to develop a method that
effectively combines this information with the motif detection provided by the convolutional
layers.

We can achieve this by multiplying the concentration of each transcription factor with
its corresponding motif’s feature map, as output by the convolutional layer. Multiplying the
concentrations with the corresponding feature maps is a simple yet effective way to combine
the information, as it inherently couples the presence of transcription factors in the cell with

their matching motifs.

o7

This coupling accomplishes two crucial objectives. Firstly, as discussed earlier, there is
a concern that the model may cheat by predicting transcription factor expressions using the
input expressions themselves. By coupling the two inputs together, we prevent the model from
considering either the DNA sequence or the transcription factor concentrations in isolation,
effectively inhibiting its ability to cheat.

Secondly, there is another concern regarding the DNA sequence: the model may not learn
the actual mechanism of transcription that we desire, and instead, merely memorize which
DNA sequences tend to yield higher expressions. In early work designing this model, this
issue persistently came up. By coupling the two inputs using multiplication, however, we
prevent the model from only looking at the DNA sequence and discourage it from memorizing
which promoter DNA sequences have higher expression.

It is crucial to ensure that the model represents the interaction between these factors,
as every input is essential to accurately model transcription, as described in section 4.3. If
the model only considers one input at a time, it cannot accurately model the mechanisms
we desire. To enforce this interaction, we directly multiply the concentrations with the
untrainable convolutional layer. At this stage of the model, there are still no trainable
parameters, meaning the model cannot modify this calculation to attempt cheating. In
Figure 18, an illustration of the transcription factor multiplication is presented. In the figure,
each transcription factor level is multiplied element-wise by the corresponding motif feature
map. A nonlinear activation is also used to selectively ignore sequence locations where no

motif is detected.

o8

2,823

21| 0 |271| 0o | o
o |21 0 | 0o | o - | 1,072
5579 0 | 0o | o |764

Element
wise

multiply
428] o |es6| 0 | 0 28.3 | 28.3 | 28.3 | 28.3 | 28,
1,072 o |ass| o | 0 Jo % 6\53 053 | 053 | 053 653 || - | 1,072
73] 0 | 0o /cf 0.1 ?6%2 764.2| 764.2 76;14 764.2

428 |-34.1 | 9.56 | -28.7 | -26.8 mﬁ“ 28.3
1,072 113|396 | 320 0.4 |228] | - 4 0.53 1,072
73 |-78.2|-346 (-128| 0.1 764.2
Pooled Feature Map 2,823 TF Levels Input

Figure 18: An illustration of the operation used to multiply transcription factors by motif
feature maps.

6.4.7 Distance Factor

In section 4.3.2, we assumed that the concentration of transcription factors is constant
throughout the cell nucleus. In reality, the distribution of transcription factors within the
cell nucleus is far from uniform.

Recall that the process of protein synthesis involves multiple steps, with the information
flow going from DNA to mRNA and finally to protein. As such, transcription factors originate
from a point source (the gene that produces them) and from there move outward. Thus, one
might imagine the concentration of transcription factors is likely to be higher in the vicinity
of their source genes.

In reality, the actual distribution of transcription factors depends not just on their pro-
duction rate, but also on their physical movement—beginning from their source gene and
travelling throughout the nucleus. Unfortunately, this movement is not a simple diffusion
process. The motion of transcription factors is in fact quite intricate, as they can slide along
the DNA sequence, hop from one sequence to another, or undergo open diffusion [70].

Moreover, the concentration of transcription factors is also tightly controlled by the ubiqg-

29

uitin system. Ubiquitination, a post-translational modification described in section 2.3.4,
marks proteins for degradation. Transcription factors are marked for degradation quickly
compared to other proteins, which further impairs the uniform distribution assumption [71][72].

Yet another layer of complexity results from considering the movement of mRNA, since
genes do not directly create proteins, but instead create mRNA which is later translated into
proteins. The time and distance that an mRNA molecule travels—starting from its source
gene until it is translated into protein—further affects the spatial distribution of transcription
factors. In eukaryotic organisms, mRNA must leave the cell nucleus to be translated in either
the cytoplasm or the endoplasmic reticulum, meaning the distance that mRNA travels is
indeed quite significant.

All in all, the intricate motion of transcription factors and mRNA leads to complex
concentration gradients that are not fully captured in our model. Future research in this
area could explore ways to model the sophisticated movement of both transcription factors
and mRNA within cells, providing a more accurate representation of the processes involved.

In order to revisit the assumption in section 4.3.2, we will make a significant simplification:
the concentration of a transcription factor will decrease as the distance from its source gene
increases. This is not likely to hold in general, but might stir inspiration for more innovative
approaches to modelling the movement of molecules involved in transcription. With this
assumption, we can say that transcription factors have a smaller influence on target genes
located farther away in the genome.

The concept of distence-dependent influence is illustrated in Figure 19, which is presented
in contrast to Figures 5 and 6. In Figure 19, the larger physical distance between genes A
and B leads to a smaller number of transcription factor proteins reaching the promoter of
gene B, in turn decreasing gene B’s expression.

In Figure 20, the calculation of the distance factor is presented. This calculation utilizes
the transcriptional start site location of the gene being predicted and 1,072 transcription
factors. The calculation also utilizes the one-hot encoded chromosome location of the gene
being predicted and all 1,072 transcription factors. With these four inputs, a unique distance
factor is calculated for each of the 1,072 transcription factors, which represents their proximity

to the gene for which expression is being predicted.

60

Lower
Expression

Binds with lower frequency

High
Expression

Figure 19: An illustration of the possible influence of physical distance on gene regulation.

61

multiply

0 1 0
24
>
Chromosome 24
Location of Gene TF Chromosome
that Model is Location
Predicting

Element wise multiply

Element-wise add

Element-wise
multipty

1,072

TF Levels
Input

w >0, trainable parameter

1,072

1,072 exp(

0.03

= x 0.66

1,072

08

+average tss
(+73,641,784)

1,868,900
48,277,664
59,125,023

Absolute
Difference

40,928,195

1,072

1,072 40,928,195

39,059,295

40,928,195

- 8,920,859

1,072

Broadcast
 ——
40,928,195 '

Transcriptional

100,053,218

TF Transcriptional
Start Site Location

Start Site Location of
Gene that Model is

Predicting

) r >0, trainable parameter

Figure 20: An illustration of the calculation of a distance factor.

6.4.8 Pooling Schedule

The concept of employing a pooling schedule is inspired by the work of Polina Govorkova et
al., who demonstrated that effective synthetic promoters could be generated by concatenating
the promoter’s highly palindromic subsequences with a minimal core promoter. This con-
catenation process effectively eliminates sections of the promoter that lack high palindrome

content. Palindromic subsequences serve as indicators of potential transcription factor bind-

ing sites, as most known motifs exhibit imperfect palindromes.

62

A key insight from Govorkova’s research is that, beyond a certain distance from the
TSS—in this case, after the minimal core promoter—the precise location of transcription
factor binding sites becomes less critical than their mere presence. This observation aligns
with the approaches documented in section 5.5.

Consequently, it is advantageous to downsample positions far from the T'SS, with increased
downsampling applied to more distant positions in order to further reduce dimensionality.
This progressive downsampling is referred to as a pooling schedule, as it utilizes the max
pooling operation, as shown in Figure 22. The dimensionality reduction achieved through
this pooling schedule, shown in Figure 21, simplifies the model’s architecture, enhancing the

model’s efficiency and performance.

110 80 120 120
elements elements elements elements
2773 790 310 -70_ [~ +50
.......................... T :
----------------- K - :
--------------------- annsamplesb‘f _.A--"bownsa“f:%w (\e@“fé‘% :
---------------- 1 100 g
.......................... factor of I tac 0@*@&
2773 790 -310 70 0 +50
1983 480 240 120
elements elements elements elements

Figure 21: An illustration of the downsampling achieved by a pooling schedule.

) 2,823 Pooled l:eature Map
| 4.28 ‘-34.1 ‘ 9.56 ‘-23.7 268 || - I 1,072
‘-54.6 ‘ -34.1 |-2a.s‘ 9.56 ‘-23.? ‘ -84.0 ‘ 268 || - I 1,072

-
]

Feature Map

v

2,823

Figure 22: A schematic illustration of the pooling schedule operation.

63

6.5 Computational Block

At the core of our model lies the computational block, which serves as the primary compo-
nent responsible for transforming processed inputs into output distributions. Encompassing

a significant portion of the model’s trainable parameters, these computational blocks are

essential to the model’s overall functionality.

In Figure 23, an illustration of the computational block is presented. In the complete
model, there are twelve computational blocks repeated sequentially. These blocks consist
of trainable convolutional layers, designed to capture relative spatial structure, and locally
connected layers that account for absolute positional information. Additionally, layer nor-

malizations and residual connections are incorporated to improve the stability and efficiency

of the training process.

128[

1D Max Pooling

“Only applied every other K
Pool Size =2

Strides

o
/3/

1D Ci

Layer

1D Locally Connected Layer

Kemel Size

128

= 3jFblock in {4, 11}
Numberolunhs/ 5482

=71 blogk'in {0, 1}
= 5if gk in {2, 3}

Hemetsize =t
32 i Number of units \ =32

Position-wise Linear Layer
3; Number of units =3

Add & Layer Normalization

I

Layer Normalization
128

Figure 23: An illustration of the computational block.

6.6 Overall Architecture

Having discussed the key components of the model, it is now time to illustrate how they

integrate to form the complete architecture. Figure 24 presents the model’s structure, show-

64

casing the interplay between the various elements previously described. The only takeaway
from Figure 24 should be how Figures 14, 15, 16, 17, 18, 20, 22, and 23 all fit together, as
each of these figures is contained within Figure 24, thus rendered unreadable. A zoomable,

pdf version of Figure 24 can be downloaded from this link.

o o [
] 0 [0 |0 f@a 22 a3 23]
wore) o [oml o [0 1| x|]assoss [oms s | | rore

it 0 02|00z | oa
[0 o |7 o [z [ronz [p0e [onz] |, Feature Map 2| b To Tl

; W p v o o lososos

G s o] :

Pooled Feature Map \ Y oo P/

/ FrEa

o) / f

. Peshaps /
DNA Input for Tor Tor [or [or |

o| [22 [0z 03|05 03]
" Eca o o e

) 2823
/
/

o o [0]
190 a2 1o
s08 32 %08

e :
Pistance, TF Levels

/ Factor '\ Input 56 | 56 42

167 147 194 16

/ Example: TATA-Box el
/ \ . Matrix Profile: POLO12.1 ~ *

/ \ T $ L (13 motifs in total)

/ \ ==L e R .

)

KRS
IRV
o 1

o
IR
o 1
T o0 o

KR
om 8 22|20 20 22
s 28 28 88 28 03
02 18 19w & 13
22 22 28 2 a8 28

| cCAA.

Example: SPI1 Molif 1
Matrix Profile: MAQOSO. 1
(1,072 motis i total)

-0 0>

=
Cell Type Input

>0, trainable parameter

Chromosome 2
Location of Gene TF Chromosome

that Model is Location
Predicting Yy 1072

sz

.

w0szass

30050285
ror2 || Wemam || - asmas || on

e oomeare
[i/

 — TF Transcriptional

(Comaws [] StartSite Location

Transcriptional
Start Site Location of
Gene that Model is
Predicting

Figure 24: An illustration of overall model architecture.

65

https://github.com/Cameron7195/IBBME_TR300M_Project/raw/main/model/COLAB%20TESTS%20(presented%20in%20report)/Architecture_pdfs/Overall_arch.pdf

6.7 Software Tools

To implement a machine learning model for gene expression prediction, a variety of software
tools and frameworks are employed which provide an efficient and robust environment for
model development, training, and evaluation. This section discusses the key software tools
used in this project, their purpose, and how they contribute to the overall machine learning

pipeline.

6.7.1 Python

Python is a versatile, high-level programming language that is widely used in various fields,
including data science, machine learning, and artificial intelligence. Its simplicity, readability,
and extensive library support make it an ideal choice for implementing machine learning mod-
els. For our gene expression prediction model, Python serves as the primary programming

language, providing the foundation upon which all other tools and libraries are built.

6.7.2 Tensorflow

TensorFlow is an open-source machine learning library developed by Google, which enables
the development and training of complex neural networks. It provides an efficient and flexible
platform for implementing, training, and deploying machine learning models. In our project,
TensorFlow is used to create the neural network layers, define the loss function, and optimize

the model using a gradient descent algorithm.

6.7.3 NumPy, SciPy, and Matplotlib

These are popular Python libraries that provide essential functionality for numerical com-
puting, scientific computing, and data visualization, respectively. NumPy offers powerful
array and matrix operations, while SciPy provides additional functionality for optimization,
linear algebra, and signal processing. Matplotlib enables the visualization of results and
model performance during training and evaluation. Together, these libraries support data

preprocessing, analysis, and visualization in our gene expression prediction model.

66

6.7.4 Google Colab

Google Colab is a cloud-based platform that offers an interactive environment for running
and sharing Jupyter notebooks. In this project, Google Colab is utilized to develop, train,
and evaluate the gene expression prediction model, as well as to document and share the

results. A link to the Colab for this project can be found in section 11.

6.7.5 Google Cloud Compute

Google Cloud Compute is an infrastructure-as-a-service (IaaS) offering that provides scalable
and customizable computing resources. Google Cloud Compute is integrated with Google
Colab to provide additional resources, such as the NVIDIA A100 used in this project. The
NVIDIA A100 is a high-performance GPU specifically designed for deep learning and Al
workloads. With this GPU, the training process is significantly accelerated, enabling exper-

imentation with larger and more complex neural network architectures.

6.8 Metrics of Performance

At present, there is no universally accepted metric for evaluating the performance of models
that predict transcription. This lack of consensus poses a significant obstacle, as it makes
it challenging to determine which models are truly better and impedes the development of
more precise and efficient methods.

As far as I know, there has been no systematic examination of various metrics for the
task of predicting transcription. I believe that a thorough investigation of different metrics
in the context of transcription prediction is essential for advancing the field, and it is crucial
for the research community to collaborate in order to establish a widely agreed-upon metric.

Metrics are vital for assessing a model’s success or failure, as they provide a benchmark
for measuring performance. Without a common metric, it is difficult or impossible to identify
the models that outperform others and to conduct systematic comparisons between them in
the research community.

In many deep learning tasks, such as object recognition and machine translation, consid-
erable advancements have resulted from the creation of standard benchmarks that researchers

use to optimize their models. For instance, the ImageNet Large Scale Visual Recognition

67

Challenge (ILSVRC) has been a driving force in the field of computer vision, leading to the
development of advanced algorithms for object recognition and classification [73].

Similarly, the annual Workshop on Machine Translation (WMT) has spurred advance-
ments in machine translation systems by providing a shared platform for researchers to
evaluate and compare their models. A prime example of success enabled by WMT is the
rapid improvement of neural machine translation models, such as the Google Translate sys-
tem, which now relies on the Transformer architecture to deliver high-quality translations in
real-time, outperforming earlier methods and offering a better user experience [7].

These benchmarks provide a common framework, uniting researchers’ efforts and en-
abling them to work together toward a shared objective. Adopting a similar approach for
transcription modelling may catalyze the field.

While no metric can ever be perfect and there is currently no consensus, for the purposes
of this document it remains necessary to choose metrics for evaluation purposes. In the sub-
sequent section, I present a range of metrics, each with its benefits and drawbacks, and offer
a high-level comparison. Throughout this document, these metrics will be used to measure
the model’s performance, providing options for evaluation frameworks that can inform future
research and potentially contribute to the development of a more widely accepted benchmark

in the field.

6.8.1 Negative Log Likelihood

The negative log likelihood is the objective function optimized during model training, making
it a natural choice for evaluation. NLL directly reflects the model’s primary goal: minimizing
the difference between predicted probabilities and true labels. NLL suffers from potential
issues when applied to validation and test sets, however, such as poor, unstable scores due
to overconfident incorrect predictions. Another issue with NLL is that models and datasets
may have different baselines for NLL, making comparisons difficult. Despite these limitations,

NLL remains worthy of consideration.

68

6.8.2 Pearson Correlation

The Pearson Correlation Coefficient is widely used for assessing the linear relationship be-
tween gene expression values [75]. The primary advantage of Pearson correlation is in directly
capturing the correlation between predicted and true values. However, Pearson correlation
may not accurately reflect the relationship between predicted and true expression levels in
the presence of non-linear relationships or when expression values span multiple orders of

magnitude, as large errors could disproportionately influence the correlation coefficient.

6.8.3 Log Pearson Correlation

The Log-transformed Pearson Correlation Coefficient applies the transformation y = log(1 +
x) to predicted and true expression values before calculating the correlation. This transfor-
mation compresses the range of expression levels, mitigating the impact of large values and
outliers in the metric calculation. Although the rationale for the log Pearson correlation may

seem heuristic, it has been useful in measuring other models in the literature [16][44][45].

6.8.4 Spearman Rank Correlation

The Spearman Rank Correlation Coefficient is a widely used metric in biological literature
for evaluating the monotonic relationship between variables, such as predicted and true gene
expression values. It is particularly beneficial when relationships are non-linear or have un-
known distributions. Unlike Pearson correlation, Spearman correlation is based on relative
rankings, making it more robust to outliers, non-linear relationships, and non-normal distri-
butions [76]. Importantly, log transforming the data does not affect the Spearman correlation

because the log function is monotonic, meaning that it preserves the rank order of the data.

6.8.5 Log R?

The Coefficient of Determination (R?) is an appealing metric that measures the proportion
of variation in the true data explained by a model. However, R? is only valid for linear
models and can lead to extremely large negative values when the model performs poorly,
making it less informative. The most extreme values can be mitigated by log transforming

the predicted and true expression values before calculating R?, although the metric is still

69

statistically invalid. While log-transformed R? can provide some limited insights, it should

not be considered with much weight.

6.8.6 Accuracy

Accuracy is defined as the proportion of correct predictions in which the model correctly
classifies a gene’s expression level as above or below the dataset’s median value. Thus, by
random guessing the model should achieve around 50% accuracy. This metric offers a quick,
easy-to-interpret measure of a model’s performance. However, accuracy may oversimplify
the evaluation by disregarding the nuances captured by other metrics. While it serves as a
straightforward measure, it is a gross oversimplification and should not be relied upon too

heavily.

70

7 Results

I conducted a series of tests to evaluate the model’s performance and to determine how well
the proposed architecture and methodology stand up to reality. The initial tests involved
training the model with various combinations of inputs to assess their impact on performance.
Since the selection of inputs is a crucial aspect of this model’s design, it is essential to validate
whether the inclusion of different inputs truly makes a significant difference. The results, as
presented in Table 1, indicate that these inputs do indeed have a substantial impact on
performance.

It must be noted that each of the tests presented could only be performed once, due
to the prohibitive cost of training models. Therefore, it is quite possible that the numbers
presented may vary slightly if the model were retrained with different initialization. This
fact is unavoidable due to limited resources.

Seven models were constructed with different inputs. Each model was trained for 100,000
steps with a batch size of 128, using a learning rate of 0.0001. The results from evaluating
each model on the validation set are presented in Table 1. One should refer to Appendix C
(or click the symbolic links under ‘Model Architecture’) to understand what each row of
Table 1 tangibly represents in the context of the model.

Metrics were calculated on a validation set of 65,536 examples. For Pearson correlation,
log Pearson correlation, and Spearman correlation, which range from -1 to +1, a difference
of at least 0.45% indicates a significantly better performance (P < 0.05) according to the
Student’s t-test, and a difference of at least 0.64% corresponds to P < 0.01. For accuracy,
which ranges from 0 to 1, the corresponding values are 0.23% (P < 0.05) and 0.33% (P <
0.01). As log R? values for nonlinear models vary between negative infinity and 1, a test of
statistical significance for this metric is not valid and not worth considering.

To evaluate these metrics, a point estimate of the output distribution is needed. For this
purpose, I found the median to be the best performing, and all results are calculated using

this estimate.

71

. Pearson Log Pearson Spearman

Model Architecture Correlation Cogrrelation C(I)Drrelation R* Accuracy
Seq 3.2% 31.2% 33.0% 1.3% 62.8%
Seq + TF 6.9% 32.4% 34.9% -18.8% 62.4%
Seq + TF + DF 5.7% 31.7% 32.9% 3.8% 63.3%
Seq + TF + Core 3. 7% 29.2% 31.1% -4.5% 62.4%
Seq + TF + Core + HM 6.4% 55.0% 58.3% 16.0% 73.9%
Seq + Core + HM 4.6% 52.5% 56.7% 10.6% 72.9%
Seq + TF + HM 5.6% 53.6% 56.0% 14.0% 73.4%

Table 1: A table showcasing the final validation results from testing seven model architec-
tures.

The optimal model, selected from all tested configurations, is Seq + TF + Core + HM.
This model architecture was subjected to an extended training period (around 500,000 train-
ing steps) in an effort to achieve the highest performance attainable. This model was then
evaluated on the test set to gain an idea of its ultimate generalization performance. The test

set results of this final model are presented in the table below.

Pearson Log Pearson Spearman
Correlation Correlation Correlation

[Final Model 6.9% 53.1% 56.6% 15.9% 73.9% |

Model Architecture Log R* Accuracy

Table 2: A table showing the test set performance of the final model under an extended
training period.

For each of the seven models tested, I generated a number of plots including 1) a plot
of predicted vs true expression values on the validation set, 2) a plot of the training and
validation loss over the training process, 3) a plot of the training and validation, Pearson and
log Pearson correlations over the training process, and 4) a plot of the training and validation

accuracy over the training process. These plots are presented in Appendix D.

72

8 Discussion

To interpret these results, it is useful to first compare rows of the table above against each
other, to assess whether inputs which were identified as important do indeed improve perfor-
mance. Keep in mind that T > 1.65 signifies significantly better performance with P < 0.05,
and T > 2.33 indicates significantly better performance with P < 0.01. Conversely, I use
negative T values to denote significantly worse performance, with T < -1.65 corresponding to
P < 0.05, and T < -2.33 corresponding to P < 0.01. All results are reported on the validation

set.

8.1 Seq vs. Seq + TF

The first comparison that can be made, shown in Table 3, assesses the benefit of including
transcription factor expressions as an input (as discussed in section 6.1.3) against a baseline

of just using the promoter & enhancer sequence.

Pearson =~ Log Pearson Spearman

Model Architecture Correlation Correlation Correlation

Log R? Accuracy

Seq 3.2% 31.2% 33.0% 1.3% 62.8%
Seq + TF 6.9% 32.4% 34.9% -188% 62.4%
I T 13.4 4.3 6.9 N/A 2.9 |

Table 3: A table comparing the Seq architecture against the Seq + TF architecture.

According to all three correlation metrics, there is a significant benefit to including the
transcription factors as input, compared to only using sequence data. This is exactly in line
with expectations, according to the discussion in section 4.3.2. It’s worth noting that the
accuracy and log R? metrics do not follow the same trend as the correlation metrics. This is
an interesting curiosity, and the reason is not exactly clear. However, it may simply be the
case these metrics do not accurately reflect the model performance. Log R? is technically
invalid for nonlinear models, and for accuracy, it could be the case that too much information
is lost by treating each prediction as either right or wrong, as described in section 6.8.6. This
phenomenon is observed in other comparisons and I would speculate the reasons are the

same.

73

8.2 Seq + TF vs. Seq + TF + DF

The next comparison, shown in Table 4, assesses the benefit of including a distance factor in

the model (as discussed in section 6.4.7).

Pearson Log Pearson Spearman

Model Archi : i i
odel Architecture Correlation ~ Correlation ~ Correlation

Log R? Accuracy

Seq + TF 6.9% 32.4% 34.9% -188% 62.4%
Seq + TF + DF 5.7% 31.7% 32.9% 38% 63.3%
[T -4.3 -2.5 -7.2 N/A 6.3 |

Table 4: A table comparing the Seq + TF architecture against the Seq + TF + DF archi-
tecture.

It is interesting to note that the distance factor makes the model perform significantly
worse on all metrics except for Log R? and accuracy. I would speculate that using a single
distance factor is far too simplified a representation of the complex dynamics of transcription
factor motion throughout the genome. This distance factor also ignores mRNA’s movement
outside the nucleus before translation, which is likely a critical deficit. Lastly, one other
possible source of error could be that a distance factor might weaken the coupling between
the DNA sequence and transcription factors, as described in section 6.4.6. For these reasons,

the distance factor does not appear in any other model architecture.

8.3 Seq + TF vs. Seq + TF + Core

The following comparison, shown in Table 5 assesses the benefit of having the model search
for core promoter elements, compared to just transcription factor motifs (as discussed in

section 6.4.5).

Pearson ~ Log Pearson Spearman

Model Archi : i i
odel Architecture Correlation ~ Correlation ~ Correlation

Log R? Accuracy

Seq + TF 6.9% 32.4% 34.9% -188% 62.4%
Seq + TF + Core 3.7% 29.2% 31.1% -4.5% 62.4%
[T -11.6 -11.6 -13.8 N/A 0 |

Table 5: A table comparing the Seq + TF architecture against the Seq + TF + Core
architecture.

74

Interestingly, the model shows significantly worse performance on all correlation metrics,
while maintaining accuracy and improving log R?. This outcome may be attributed to
core promoter elements not being linked to transcription factor concentrations, which was
identified as important in section 6.4.6. This decoupling allows the model to potentially
focus solely on the DNA sequence input without considering its interaction with transcription
factors, leading the model to potentially cheat. As the results are based on the validation

set, taking such a shortcut could result in the poor generalization performance reflected here.

8.4 Seq + TF + Core vs. Seq + TF 4+ Core + HM

The next comparison, shown in Table 6, assesses the benefit of including histone modification

data as input (as discussed in section 6.1.6).

Pearson Log Pearson Spearman

Model Architect : i i
odel Arclitecture Correlation Correlation — Correlation

Log R? Accuracy

Seq + TF + Core 3.7% 29.2% 31.1% -45% 62.4%
Seq + TF + Core + HM 6.4% 55.0% 583% 16.0% 73.9%
[T -4.3 -2.5 -7.2 N/A 63 |

Table 6: A table comparing the Seq + TF + Core architecture against the Seq + TF + Core
+ HM architecture.

Interestingly, incorporating histone modifications leads to a significant performance im-
provement across all metrics. I suggest this large improvement is due to histone modifications
being a reliable indicator of gene expression, with their mere presence providing substantial
information about the level of transcription. Consequently, it is relatively easy for the model
to learn the relationship between histone modifications and expression. In contrast, the in-
teraction of transcription factors is a more complex and challenging process to learn, making
exceptional performance harder to achieve.

Additionally, it is possible that the histone modification input enhances the value of the
transcription factor input. Since the binding of transcription factors is modulated by histone
modifications, the relationship between transcription factors and expression levels largely
depends on histone modification information. Therefore, histone modification information is

likely quite important for accurately modeling the interaction between transcription factors

75

and DNA, and the next comparison expands on this idea.

8.5 Seq + Core + HM vs. Seq + Core + TF + HM

The next comparison, shown in Table 7, assesses the benefit of transcription factors against

the baseline of using sequence data, core promoter elements, and histone modifications.

Pearson = Log Pearson Spearman

Model Archi . i i
odel Architecture Correlation Correlation — Correlation

Log R? Accuracy

Seq 4 Core + HM 4.6% 52.5% 56.7% 10.6% 72.9%
Seq + TF + Core + HM 6.4% 55.0% 58.3% 16.0% 73.9%
I T 6.5 9.1 5.8 N/A 72 |

Table 7: A table comparing the Seq + Core + HM architecture against the Seq + TF +
Core + HM architecture.

As anticipated, incorporating transcription factor expression enhances all metrics, with a
more significant improvement than observed in the comparison of section 8.1. This suggests
that histone modifications likely boost the value of transcription factor input and reinforces
the notion that including all crucial factors in transcription is essential for accurately mod-
eling the underlying mechanisms, as noted in section 4.3. It is plausible that incorporating
additional inputs, such as DNA methylation, noncoding RNAs, and others, would further

improve performance and similarly increase the value of all other inputs.

76

9 Next Steps

Many simplifications, approximations, shortcuts, and assumptions were made during the
development of our model, and the data utilized were imperfect. As a result, there are a
wide variety of opportunities to enhance and refine the model in the future. The primary
areas for improvement are listed below, which, if addressed, would significantly improve the

model’s performance.

e Better data. In machine learning, it is commonly noted that the quality of a model
largely depends on the quality of its training data. Therefore, improved data from every
source will likely make the largest improvements in the quality of the model. Listed

below are the most significant ways of accomplishing this.
— Accounting for expression TPM being used instead of transcription frequencies,
as noted in section 6.1.1. This could be accomplished in the following ways.

x Account for post-transcriptional modifications.
* Account for mRNA degradation.

x Collecting data specifically on transcription frequency, rather than mRNA

abundance.

— Histone modifications measured in the 54 GTEx cell types, ideally in the same

tissues as the expression measurements.
— A more accurate complete set of binding motifs for transcription factors.

— A more complete list of transcription factors.

e Including more inputs to the model.

Coactivators and corepressors.

DNA Methylation.

Noncoding RNAs.

Other histone modifications besides the three marks used.

— Accounting for chromatin geometry, linker DNA locations, etc.

7

— Accounting for DNA bending.
— Accounting for mediator complex interactions.
— Inputting a wider DNA sequence—2,823 base pairs may not be enough.
x Including more downstream regions that transcription factors might bind to.
— Accounting for the different DNA of different patients in GTEx experiments.
e Optimizing model architecture. There were countless structural decisions that could be

reevaluated and yield improvement. Any part of Figure 24 could change and possibly

improve results.

e More accurately modelling the movement of transcription factors throughout the cell
nucleus, in order to better capture the concentration gradient and binding frequencies

of transcription factors.
— Accounting for the movement of mRNA.
— Accounting for the degradation of mRNA.
— Accounting for transcription factors sliding along DNA sequences.
— Accounting for transcription factors hopping across DNA sequences.
— Accounting for transcription factors diffusing openly throughout the cell.
— Accounting for ubiquitination and degradation of transcription factors.

e Accounting for changes in state over the cell cycle. Many genes express differently in

different cell phases, yet this is conveniently ignored in our model.

Importantly, the scale and variety of factors identified above exceed the capabilities of
a single individual, and beneficial progress is to be achieved only through the collaborative
efforts of a dedicated community. To be sure, the advancement of vision models to human-
like capabilities, the development of machine translation, and the creation of sophisticated
language models were all made possible by the collective commitment of researchers who
recognized the importance of their work and devoted their efforts to optimizing models. Fully
exploring transcription is beyond the scope of one person, indeed requiring the concerted

efforts of a large group to address and ultimately solve its challenges.

78

Yet, there is an undeniable sense of promise on the horizon. The path forward is clear, and
the rewards of tackling transcription are, as I have argued, immense. Achieving a complete,
accurate predictive model of transcription will enable us to confront formidable challenges
and unlock unprecedented possibilities, paving the way for groundbreaking advancements in
biotechnology.

The next step, after accurately predicting gene expression in the human genome, is to
extend our model to DNA sequences transfected into human cells. As sequences up to 4,700
base pairs in length can be effectively transfected using the AAV9 virus, the next task is
determining these sequences’ expression patterns. Though many similarities with the human
genome will exist, transfected sequences may interact differently with chromatin, histone
modifications, and other factors. Designing and refining a predictive model that can handle
transfected sequences represents the next frontier in mastering protein expression in human
cells.

With a robust predictive model capable of handling transfected sequences, it is possible to
confidently determine the protein output from any DNA sequence in any specific cell type or
state. Such a model can be used to design appropriate promoters for any desired expression
levels across various cells. The potential of such technology is enormous—from expressing
toxic proteins solely in cancer cells to applications currently unimagined.

As I look ahead, I envision a world where our collective efforts have manifest the full
potential of transcription and protein expression. In such a world, an extensive knowledge
of these complex biomolecules would transform the fields of biotechnology and medicine,
enabling us to conquer formidable challenges and achieve monumental progress. Ultimately,
gaining proficiency in proteins holds the power to open a Pandora’s box of possibilities,
presenting both unprecedented opportunities and potential risks. As we continue on this
journey, it is imperative that we exercise wisdom and restraint, ensuring that our pursuit

leads to the betterment of humanity rather than unintended consequences.

79

10 Data Availability

I openly provide the complete, preprocessed dataset used for supervised training and evalu-
ation. I name this dataset IBBME_TR300M’—the Institute of Biomaterials and Biomedical
Engineering Transcription Regression dataset, with over 300 million supervised examples.
The IBBME_TR300M dataset has a download size of 1.17 GB and can be downloaded from
this link.

The dataset is stored efficiently using compressed numpy arrays, which simplifies the pro-
cess for other researchers who wish to work with this dataset. The preprocessing pipeline,
which was employed to create these numpy arrays from multiple sources, is detailed in Ap-
pendix E. Links to the multiple sources of this data are provided below.

Data sources:

1. The GTEx Portal

2. GENCODE v26 Release

3. JASPAR

4. U of T Applied Protein Engineering Lab SQL Server
5. The Human Transcription Factors

6. Histone Modification Tracks

(a) H3K4Mel Mark
(b) H3K4Me3 Mark

(¢) H3K27Ac Mark

80

https://github.com/Cameron7195/IBBME_TR300M_Project/raw/main/model/data.zip
https://gtexportal.org/home/datasets
https://www.gencodegenes.org/human/release_26.html
https://jaspar.genereg.net/
http://apel.ibbme.utoronto.ca/apel
http://humantfs.ccbr.utoronto.ca/download.php
https://www.nature.com/articles/nrg2905
https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=1606007579_EgQ0YbRrtvizaeLesDGuyy4ZUnbw&c=chr16&g=wgEncodeRegMarkH3k4me1
https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=1606007579_EgQ0YbRrtvizaeLesDGuyy4ZUnbw&c=chr16&g=wgEncodeRegMarkH3k4me3
https://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid=1606007579_EgQ0YbRrtvizaeLesDGuyy4ZUnbw&c=chr16&g=wgEncodeRegMarkH3k27ac

11 Code Availability

I openly provide all of the code required to generate the dataset from scratch, define the
model, modify architecture, train the model, and evaluate the model on Github. In addition,
I provide a self-contained Google Colab environment which contains all of the packages,
functionality, and code required to modify the model architecture and retrain it on the

dataset—all in just a few clicks.

81

https://github.com/Cameron7195/IBBME_TR300M_Project
https://colab.research.google.com/drive/1ZoE5pkMQvrTCuxUxU_1L1fHe55recfgo?usp=sharing

References

[1] S. Lefebvre, L. Biirglen, S. Reboullet, et al., “Identification and characterization of a
spinal muscular atrophy-determining gene,” Cell, vol. 80, no. 1, pp. 155-165, 1995.

[2] See how zolgensma(®) (onasemnogene abeparvovec-zioi) works. [Online]. Available: https:

//www.zolgensma.com/how-zolgensma-works.

[3] L. Shapiro and R. Losick, “Delivering the message: How a novel technology enabled the
rapid development of effective vaccines,” Cell, vol. 184, no. 21, pp. 5271-5274, 2021.

[4] E. A. Ostrander, Central dogma. [Online]. Available: https : //www . genome . gov /

genetics-glossary/Central-Dogma.

[5] P. Ganguly, Transcription. [Online|. Available: https://www.genome.gov/genetics-

glossary/Transcription.

[6] S. A. Bates, Deoxyribonucleic acid (dna). [Online]. Available: https://www.genome .

gov/genetics-glossary/Deoxyribonucleic-Acid.

[7] E. Green, Gene. [Online|. Available: https://wuw.genome.gov/genetics-glossary/

Gene.

[8] O. Fornes, J. A. Castro-Mondragon, A. Khan, et al., “Jaspar 2020: Update of the open-
access database of transcription factor binding profiles,” Nucleic acids research, vol. 48,

no. D1, pp. D87-D92, 2020.

9] S. A. Lambert, A. Jolma, L. F. Campitelli, et al., “The human transcription factors,”
Cell, vol. 172, no. 4, pp. 650-665, 2018.

[10] P. P. Liu, Chromatin. [Online]. Available: https ://www . genome . gov/genetics -

glossary/Chromatin.

[11] D. A. Gilchrist, Histone. [Online]. Available: https://www.genome . gov/genetics-

glossary/histone.

[12] H. B. Sun, J. Shen, and H. Yokota, “Size-dependent positioning of human chromosomes

in interphase nuclei,” Biophysical journal, vol. 79, no. 1, pp. 184-190, 2000.

[13] A.J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,”

Cell research, vol. 21, no. 3, pp. 381-395, 2011.

82

https://www.zolgensma.com/how-zolgensma-works
https://www.zolgensma.com/how-zolgensma-works
https://www.genome.gov/genetics-glossary/Central-Dogma
https://www.genome.gov/genetics-glossary/Central-Dogma
https://www.genome.gov/genetics-glossary/Transcription
https://www.genome.gov/genetics-glossary/Transcription
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Deoxyribonucleic-Acid
https://www.genome.gov/genetics-glossary/Gene
https://www.genome.gov/genetics-glossary/Gene
https://www.genome.gov/genetics-glossary/Chromatin
https://www.genome.gov/genetics-glossary/Chromatin
https://www.genome.gov/genetics-glossary/histone
https://www.genome.gov/genetics-glossary/histone

[14]

[15]

[16]

[23]

[24]

L. D. Moore, T. Le, and G. Fan, “Dna methylation and its basic function,” Neuropsy-
chopharmacology, vol. 38, no. 1, pp. 23-38, 2013.

T. R. Cech and J. A. Steitz, “The noncoding rna revolution—trashing old rules to forge
new ones,” Cell, vol. 157, no. 1, pp. 77-94, 2014.

S. Clancy et al., “Rna splicing: Introns, exons and spliceosome,” Nature Education,

vol. 1, no. 1, p. 31, 2008.

D. Day and M. F. Tuite, “Post-transcriptional gene regulatory mechanisms in eukary-

otes: An overview,” Journal of endocrinology, vol. 157, no. 3, pp. 361-371, 1998.

R. G. Krishna and F. Wold, “Post-translational modifications of proteins,” Methods in

protein sequence analysis, pp. 167-172, 1993.
OpenAl, Gpt-4 technical report, 2023. arXiv: 2303.08774 [cs.CL].

J. E. Moore, M. J. Purcaro, H. E. Pratt, et al., “Expanded encyclopaedias of dna
elements in the human and mouse genomes,” Nature, vol. 583, no. 7818, pp. 699710,

2020.

E. B. Lewis, “A gene complex controlling segmentation in drosophila,” Nature, vol. 276,

no. 5688, pp. 565-570, 1978.

F. Jacob, D. Perrin, C. Sanchez, J. Monod, et al., “The operon: A group of genes whose
expression is co-ordinated by an operator.,” Compte Rendu de I’Academie des Sciences,

vol. 250, pp. 1727-1729, 1960.

F. Jacob and J. Monod, “Genetic regulatory mechanisms in the synthesis of proteins,”

Journal of molecular biology, vol. 3, no. 3, pp. 318-356, 1961.

V. G. Allfrey, R. Faulkner, and A. Mirsky, “Acetylation and methylation of histones
and their possible role in the regulation of rna synthesis,” Proceedings of the National

Academy of Sciences, vol. 51, no. 5, pp. 786-794, 1964.

J. Hurwitz, “The discovery of rna polymerase,” Journal of Biological Chemistry, vol. 280,

no. 52, pp. 4247742485, 2005.

R. G. Roeder and W. J. Rutter, “Multiple forms of dna-dependent rna polymerase in
eukaryotic organisms,” Nature, vol. 224, pp. 234-237, 19609.

83

https://arxiv.org/abs/2303.08774

[27]

[28]

[29]

[32]

[33]

D. R. Engelke, S.-Y. Ng, B. Shastry, and R. G. Roeder, “Specific interaction of a purified
transcription factor with an internal control region of 5s rna genes,” Cell, vol. 19, no. 3,

pp. 717-728, 1980.

P. M. Flanagan, R. J. Kelleher III, M. H. Sayre, H. Tschochner, and R. D. Kornberg,
“A mediator required for activation of rna polymerase ii transcription in vitro,” Nature,

vol. 350, no. 6317, pp. 436-438, 1991.

M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke, “Gene regulatory
network inference: Data integration in dynamic models—a review,” Biosystems, vol. 96,

no. 1, pp. 86-103, 2009.

M. Banf and S. Y. Rhee, “Computational inference of gene regulatory networks: Ap-
proaches, limitations and opportunities,” Biochimica et Biophysica Acta (BBA)-Gene
Regulatory Mechanisms, vol. 1860, no. 1, pp. 41-52, 2017.

J. M. Stuart, E. Segal, D. Koller, and S. K. Kim, “A gene-coexpression network for
global discovery of conserved genetic modules,” science, vol. 302, no. 5643, pp. 249-255,
2003.

R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, “The mutual information:
Detecting and evaluating dependencies between variables,” Bioinformatics, vol. 18,

no. suppl_2, S231-S240, 2002.

A. Rao, A. O. Hero III, D. J. States, and J. D. Engel, “Using directed information

Y

to build biologically relevant influence networks,” in Computational Systems Bioinfor-

matics: (Volume 6), World Scientific, 2007, pp. 145-156.

S. A. Kauffman, “Metabolic stability and epigenesis in randomly constructed genetic

nets,” Journal of theoretical biology, vol. 22, no. 3, pp. 437-467, 1969.

R. Thomas, “Boolean formalization of genetic control circuits,” Journal of theoretical

biology, vol. 42, no. 3, pp. 563-585, 1973.

S. Martin, Z. Zhang, A. Martino, and J.-L.. Faulon, “Boolean dynamics of genetic
regulatory networks inferred from microarray time series data,” Bioinformatics, vol. 23,

no. 7, pp. 866-874, 2007.

84

[37]

[38]

[42]

[43]

[44]

N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, “Dynamic
modeling of gene expression data,” Proceedings of the National Academy of Sciences,

vol. 98, no. 4, pp. 1693-1698, 2001.

E. Sakamoto and H. Iba, “Inferring a system of differential equations for a gene regula-
tory network by using genetic programming,” in Proceedings of the 2001 Congress on
FEvolutionary Computation (IEEE Cat. No. 01TH8546), IEEE, vol. 1, 2001, pp. 720
726.

A. Climescu-Haulica and M. D. Quirk, “A stochastic differential equation model for

transcriptional regulatory networks,” BMC' bioinformatics, vol. 8, pp. 1-9, 2007.

S. Kimura, K. Ide, A. Kashihara, et al., “Inference of s-system models of genetic net-
works using a cooperative coevolutionary algorithm,” Bioinformatics, vol. 21, no. 7,

pp. 1154-1163, 2005.

C. Rangel, J. Angus, Z. Ghahramani, et al., “Modeling t-cell activation using gene
expression profiling and state-space models,” Bioinformatics, vol. 20, no. 9, pp. 1361—

1372, 2004.

M. A. Beer and S. Tavazoie, “Predicting gene expression from sequence,” Cell, vol. 117,

no. 2, pp. 185-198, 2004.

Y. Yuan, L. Guo, L. Shen, and J. S. Liu, “Predicting gene expression from sequence:

A reexamination,” PLoS computational biology, vol. 3, no. 11, €243, 2007.

D. R. Kelley, Y. A. Reshef, M. Bileschi, D. Belanger, C. Y. McLean, and J. Snoek, “Se-
quential regulatory activity prediction across chromosomes with convolutional neural

networks,” Genome research, vol. 28, no. 5, pp. 739-750, 2018.

D. R. Kelley, “Cross-species regulatory sequence activity prediction,” PLoS computa-

tional biology, vol. 16, no. 7, e1008050, 2020.

Z. Avsec, V. Agarwal, D. Visentin, et al., “Effective gene expression prediction from
sequence by integrating long-range interactions,” Nature methods, vol. 18, no. 10,

pp. 1196-1203, 2021.

85

[47]

[48]

[49]

[52]

[53]

[54]

R. Karli¢, H.-R. Chung, J. Lasserre, K. Vlahovicek, and M. Vingron, “Histone modifi-
cation levels are predictive for gene expression,” Proceedings of the National Academy

of Sciences, vol. 107, no. 7, pp. 29262931, 2010.

R. Singh, J. Lanchantin, G. Robins, and Y. Qi, “Deepchrome: Deep-learning for pre-
dicting gene expression from histone modifications,” Bioinformatics, vol. 32, no. 17,

pp. 1639-1648, 2016.

A. Natarajan, G. G. Yardimci, N. C. Sheffield, G. E. Crawford, and U. Ohler, “Pre-
dicting cell-type—specific gene expression from regions of open chromatin,” Genome

research, vol. 22, no. 9, pp. 1711-1722, 2012.

H. Zhong, S. Kim, D. Zhi, and X. Cui, “Predicting gene expression using dna methy-
lation in three human populations,” PeerJ, vol. 7, e6757, 2019.

D. B. Seal, V. Das, S. Goswami, and R. K. De, “Estimating gene expression from dna
methylation and copy number variation: A deep learning regression model for multi-

omics integration,” Genomics, vol. 112, no. 4, pp. 28332841, 2020.

Z. Ouyang, Q. Zhou, and W. H. Wong, “Chip-seq of transcription factors predicts
absolute and differential gene expression in embryonic stem cells,” Proceedings of the

National Academy of Sciences, vol. 106, no. 51, pp. 2152121526, 2009.

C. Cheng, R. Alexander, R. Min, et al., “Understanding transcriptional regulation by

7

integrative analysis of transcription factor binding data,” Genome research, vol. 22,

no. 9, pp. 1658-1667, 2012.

X. He, M. A. H. Samee, C. Blatti, and S. Sinha, “Thermodynamics-based models of
transcriptional regulation by enhancers: The roles of synergistic activation, coopera-
tive binding and short-range repression,” PLoS computational biology, vol. 6, no. 9,

€1000935, 2010.

J. Gertz, E. D. Siggia, and B. A. Cohen, “Analysis of combinatorial cis-regulation in
synthetic and genomic promoters,” Nature, vol. 457, no. 7226, pp. 215-218, 2009.

D. H. Nguyen and P. D’haeseleer, “Deciphering principles of transcription regulation

in eukaryotic genomes,” Molecular systems biology, vol. 2, no. 1, pp. 20060012, 2006.

86

[57]

[58]

[59]

[62]

[63]

[64]

Y. Zhao, M.-C. Li, M. M. Konaté, et al., “T'pm, fpkm, or normalized counts? a com-
parative study of quantification measures for the analysis of rna-seq data from the nci
patient-derived models repository,” Journal of translational medicine, vol. 19, no. 1,

pp. 1-15, 2021.

G. Consortium, “The gtex consortium atlas of genetic regulatory effects across human

tissues,” Science, vol. 369, no. 6509, pp. 1318-1330, 2020.

V. A. Schneider, T. Graves-Lindsay, K. Howe, et al., “Evaluation of grch38 and de
novo haploid genome assemblies demonstrates the enduring quality of the reference

assembly,” Genome research, vol. 27, no. 5, pp. 849-864, 2017.

J. T. Kadonaga, “The dpe, a core promoter element for transcription by rna polymerase

ii,” Fxperimental €& molecular medicine, vol. 34, no. 4, pp. 259-264, 2002.

A. Frankish, S. Carbonell-Sala, M. Diekhans, et al., “Gencode: Reference annotation
for the human and mouse genomes in 2023,” Nucleic acids research, vol. 51, no. D1,

pp. D942-D949, 2023.

V. W. Zhou, A. Goren, and B. E. Bernstein, “Charting histone modifications and the
functional organization of mammalian genomes,” Nature Reviews Genetics, vol. 12,

no. 1, pp. 7-18, 2011.

J. A. Castro-Mondragon, R. Riudavets-Puig, I. Rauluseviciute, et al., “Jaspar 2022:
The 9th release of the open-access database of transcription factor binding profiles,”

Nucleic acids research, vol. 50, no. D1, pp. D165-D173, 2022.

Y. Di, D. W. Schafer, J. S. Cumbie, and J. H. Chang, “The nbp negative binomial
model for assessing differential gene expression from rna-seq,” Statistical applications

in genetics and molecular biology, vol. 10, no. 1, 2011.

X. Ren and P.-F. Kuan, “Negative binomial additive model for rna-seq data analysis,”

BMC bioinformatics, vol. 21, pp. 1-15, 2020.

I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:
MIT Press, 2016, http://www.deeplearningbook.org.

Y. Lu and J. Lu, A universal approximation theorem of deep neural networks for ex-

pressing probability distributions, 2020. arXiv: 2004.08867 [cs.LG].

87

http://www.deeplearningbook.org
https://arxiv.org/abs/2004.08867

[68]

[69]

[70]

[76]

M. Beckstette, R. Homann, R. Giegerich, and S. Kurtz, “Fast index based algorithms
and software for matching position specific scoring matrices,” BMC bioinformatics,

vol. 7, no. 1, pp. 1-25, 2006.

M. C. Frith, M. C. Li, and Z. Weng, “Cluster-buster: Finding dense clusters of motifs
in dna sequences,” Nucleic acids research, vol. 31, no. 13, pp. 3666—-3668, 2003.

H. G. Schmidt, S. Sewitz, S. S. Andrews, and K. Lipkow, “An integrated model of
transcription factor diffusion shows the importance of intersegmental transfer and qua-
ternary protein structure for target site finding,” PLOS one, vol. 9, no. 10, e108575,
2014.

M. Hochstrasser and D. Kornitzer, “Ubiquitin-dependent degradation of transcription

regulators,” Ubiquitin and the Biology of the Cell, pp. 279-302, 1998.

J. Desterro, M. Rodriguez, and R. Hay™*, “Regulation of transcription factors by protein
degradation,” Cellular and Molecular Life Sciences CMLS, vol. 57, pp. 1207-1219, 2000.

O. Russakovsky, J. Deng, H. Su, et al., “Imagenet large scale visual recognition chal-

lenge,” International journal of computer vision, vol. 115, pp. 211-252, 2015.

A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances in

neural information processing systems, vol. 30, 2017.

S. K. Schulze, R. Kanwar, M. Golzenleuchter, T. M. Therneau, and A. S. Beutler, “Sere:
Single-parameter quality control and sample comparison for rna-seq,” BMC genomics,

vol. 13, no. 1, pp. 1-9, 2012.

S. de Siqueira Santos, D. Y. Takahashi, A. Nakata, and A. Fujita, “A comparative study
of statistical methods used to identify dependencies between gene expression signals,”

Briefings in bioinformatics, vol. 15, no. 6, pp. 906-918, 2014.

G. Marsaglia, “Xorshift rngs,” Journal of Statistical software, vol. 8, pp. 1-6, 2003.

88

A Example Generation

The entire dataset is stored in compressed numpy files, so there are several options for con-
verting these to a format that Tensorflow can use for training. I found the best approach, all
things considered, to be loading all of these arrays into python numpy arrays and generating
examples on the fly during training, despite having the drawback of requiring around 20 GB
of application memory. Another option would be to construct a custom Tensorflow dataset
structure from which examples could be loaded serially, which is the fastest method and
requires little RAM. The problem with this method is that to load examples serially they
must be represented serially, and usually uncompressed for maximal speed. Unfortunately,
there are 340 million examples in this dataset, and each example contains several inputs
which together take up more than 1 MB. Thus, storing the full dataset serially would require
storage space on the order of 340 TB.

Clearly, such a solution is intractable, and therefore the best option is to generate examples
on the fly during training. The generation of examples on the fly is represented in Figure 25.
One immediate problem with this solution is generating examples in a shuffled way. Shuffling
the dataset prior to training is a crucial step in the machine learning pipeline, as it ensures
that the data is randomly distributed throughout the training set. Randomization helps
prevent the model from learning spurious correlations or biases present in subsections of the
data, which could lead to overfitting and reduced generalization performance. Generating

examples on the fly poses a significant challenge as to how and when the dataset will be

shuffled.

89

expressionArr

%

Generate promoter Generate sample
index i in the range index | in the range
[0, 19785] [0, 17381]
creSeqArr | | acgtSeqArr tssAIr chrArr hmArr tfExpressArr| |cellTypeArr

Each example takes the form:
[(cre, acqt, tss, chr, tiLevels,
cellType, hm), (expression)] Model
Model Prediction True Value I E—

Figure 25: A flow diagram illustrating the example generation pipeline.

Standard shuffling algorithms have O(n) space complexity, so shuffling 340M examples
is as intractable as storing this many examples serially. Luckily, there is a way to generate
promoter and sample indices in O(1) time and space complexity in random order, without
repetition. These indices, taken together, correspond to a unique training example and can
be used to directly index into the numpy arrays in which the dataset is stored.

Xorshift RNGs, introduced by George Marsaglia, are a class of pseudo random number
generators with periods of 2321 (for 32-bit integers), 2%*~1 (for 64-bit), etc. in a random
order [77]. Now 232 — 1 is just over 4 billion, and we have 340 million examples, so by using
a 32-bit Xorshift RNG it is possible to generate a random integer which corresponds to a
unique example about 8% of the time, while simply generating another integer if the one we
generated is greater than 340 million. In other words, it takes only around 12 calls to the
Xorshift RNG on average to generate indices which correspond to a unique training example
randomly, without repetition. The precise algorithm I use to generate example indices is
presented below.

On line 1, the xorshift RNG is defined. This function will take in two indices (the same
indices presented in Figure 25) and generate two new indices randomly, without repetition,
which is guaranteed by the results presented by Marsaglia [77].

While the promoter and sample indices are updated after every example is generated,

90

© 00 N O Ot ke W N

e e e e e e e T
© o0 N O Ut k= W N = O

20
21

the arrays of indices for the validation and test sets do not change after being defined on
lines 61, 62, 64, and 65. These four arrays specify the indices of the examples that will be
used for validation and testing. On line 25, a check is made to ensure that no gene or sample
in any of these arrays is used in a trainable example.

On line 18, the example generation function is defined, which is called by Tensorflow
for every example generated during training or inference. The example generation function
first checks the set argument, which is used to specify whether the function should return
examples from the training, validation, or test set. On lines 28, 35, and 42, examples are
returned using the yield keyword.

Finally, on lines 44-49, the sizes of the various dataset splits and batch size are set. Only
the NUM_TRAIN and BATCH_SIZE parameters should be changed in order to keep the

validation and test sets consistent.

def xorshiftNextIndex (promoterDataldx, sampleldx):

i = np.array(promoterDataldx*17382 + sampleldx, dtype=np.uint32)
a = np.array (13, dtype=np.uint32)
b = np.array (17, dtype=np.uint32)
¢ = np.array (5,

dtype=np.uint32)

while True:

i "=1<< a
i"=1i>hb

i '=1<c

if i // 17382 < 19786:
break

nextPromoterDataldx = i // 17382
nextSampleldx = i % 17382

return nextPromoterDataldx, nextSampleldx

def generateExamples(set):
global promoterDataldx, sampleldx, val_promldxs, val_smplldxs, test_promldxs
, test_smplldxs
if set = 1: # Train
for i in range (NUM.TRAIN):

91

22

23
24

25

26

27
28

29
30
31
32
33
34
35

36
37
38
39
40
41
42

43

promoterDataldx, sampleldx = xorshiftNextIndex (promoterDataldx,

sampleldx)

If this promoter index or sample index is in our validation set,
generate another.
while promoterDataldx in val_promldxs or promoterDataldx in

test_promldxs or sampleldx in val_smplldxs or sampleldx in test_smplldxs:

promoterDataldx, sampleldx = xorshiftNextIndex (promoterDataldx,

sampleldx)

yield ((creSeqArr[promoterDataldx], acgtSeqArr[promoterDataldx], chrArr]|
promoterDataldx], tssArr[promoterDataldx], tfExpressArr[sampleldx],
cellTypeArr [sampleldx], hmArr|[promoterDataldx]), (expressionArr|
promoterDataldx, sampleldx]))

elif set = 2: # Validation
for i in range (NUM_VAL.TRANSCRIPTS % NUM_VALSAMPLES) :
promldx = val_promIdxs[i%NUM_VAL TRANSCRIPTS]
smplldx = val_smplldxs[i//NUM_-VAL TRANSCRIPTS]

yield ((creSeqArr[promldx], acgtSeqArr [promldx], chrArr[promldx], tssArr
[promIdx], tfExpressArr[smplldx], cellTypeArr[smplldx], hmArr[promlIdx]), (

expressionArr [promldx, smplldx]))

elif set = 3: # Test
for i in range (NUM_TEST -TRANSCRIPTS * NUM_TEST SAMPLES) :
promldx = test_promIdxs [i%NUM_TEST TRANSCRIPTS]
smplldx = test_smplldxs[i//NUM.TEST_-TRANSCRIPTS]

yield ((creSeqArr[promldx], acgtSeqArr [promldx], chrArr[promIdx], tssArr
[promlIdx], tfExpressArr[smplldx]|, cellTypeArr[smplldx], hmArr[promldx]), (

expressionArr [promldx, smplldx]))

44 NUM.TRAIN = 1280000
45 NUM_VAL.TRANSCRIPTS = 256
46 NUM_VAL SAMPLES = 256

92

47
48
49
50
o1

52
53
54
95
56

o7
o8

59

60
61
62

63
64
65

NUM_TEST_TRANSCRIPTS = 256
NUM_TESTSAMPLES = 256
BATCHSIZE = 128

Define global variables which hold dataset indices, from which we will
generate examples. This seed can be modified to get different train data
from the set.

np.random. seed (3)

seed = np.random.randint (0, 2%%32, dtype=np.uint32)

promoterDataldx , sampleldx = xorshiftNextIndex (seed // 17382, seed % 17382)

Generate the indices for our validation set. This seed cannot be modified
else validation & test indices will be shuffled into the training data.

np.random. seed (0)

valAndTestProm = np.random.choice (19746, NUM_VAL TRANSCRIPTS+
NUM_TEST-TRANSCRIPTS, replace=False)

valAndTestSmpl = np.random. choice (17382, NUM VAL SAMPLES+NUM TEST SAMPLES,

replace=False)

val_promIdxs = valAndTestProm [0:NUM_VAL TRANSCRIPTS]
test_promIdxs = valAndTestProm [NUM_VAL TRANSCRIPTS: NUM_VAL TRANSCRIPTS+
NUM.TEST TRANSCRIPTS|

val_smplldxs = valAndTestSmpl [0:NUM_VAL SAMPLES]

test_smplldxs = valAndTestSmpl [NUM_VAL SAMPLES: NUM_VAL SAMPLES+
NUM_TEST_SAMPLES]

93

B Convolutional Motif Detection Test

To validate the principle that convolutional layers can effectively detect motifs as expected, I created
a conjured dataset of 101,000 (100k training set, 1k validation set) completely random promoters.
In 5% of these, I inserted the sequence motif “ACGGCATAGAATA” at a random location and set
Yirue 0 100. In the other 95%, no sequence was inserted, and ;. was set to 0. With this test, I seek
to answer whether one trainable convolutional layer (with exponential activation), one max pooling
layer, two trainable dense layers, and an output negative binomial distribution—all optimized using
a NLL loss—can learn to detect the inserted motif and output the desired expression (yiryue). The
results are presented in Figures 26 and 27.

In the top left diagram of Figure 26, I present the training loss and validation loss over 15
training epochs. In the top right diagram of Figure 26, I present the Pearson and log Pearson
correlations between predicted and true expression values over 15 epochs for training and validation
data. In the bottom left plot of Figure 26, I present a characteristic model prediction (the output
probability density function) for an example where no motif was inserted. The red x represents the
distribution mean; here, one can see that nearly the entire probability mass has converged to 0. In
the bottom left of Figure 26, I present a characteristic model prediction for an example where a
motif was inserted. Here one can see the probability distribution is correctly shifted out to around
100.

In Figure 27, I present a plot of predictions vs true expression values on the conjured validation
set. Since the conjured data was generated with no noise, the model was able to learn the data-
generating function completely and make near perfect predictions for all 1,000 validation examples.
All 1,000 points on this scatter plot are located at either (0, 0) or (100, 100); thus, the plot looks
quite empty. I used the median to attain a point estimate of the negative binomial distribution.

These results demonstrate that convolutions can detect motifs to any desired degree of accuracy.
The only caveat with this conclusion is that convolutions will also detect short motifs that may
appear by pure chance alongside those that were inserted. In the human genome, however, motifs
occurring by chance may still constitute binding sites, and it could even be argued all motifs in the

genome occurred ‘by chance.’

94

0.8

Loss over training

0.7 4

0.6 1

0.5 4

Loss

0.4

0.3 1

0.2

— frain
validation

Probability Density Function for true value: 0.0

1.0

0.8

0.6

0.4 1

0.2

0.0 1

-

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

le—9

Pearson correlation over training

1.0+

0.9 1

0.8

Correlation

0.7

—— Pearsonr

log transformed Pearson r
—— val Pearson r
—— val log transformed Pearson r

0.6 1

T
0 2 4 6 8 10 12 14
Epoch

Probability Density Function for true value: 100.0

0.040 4
i
|

0.035 4 !

0.0304

0.025 4 i

0.0204

0.015 4

0.010 4

0.005 +

0.000 4

T T T
0 20 40 60 80 100 120 140 160

Figure 26: Four plots which showcase key results from training a toy model on a conjured

dataset.

95

True vs predicted, R?= 1.0

100 ~

80 A

60 A

40

Predicted expression level

201

T
0 20 40 60 80 100
True expression level

Figure 27: A plot of predictions vs true expression values on the conjured validation set.

96

C Architectures Tested

In this Appendix, diagrams are presented for each of the seven model architectures tested, which
should be taken in contrast to Figure 24. As with Figure 24, the purpose of these diagrams is to
showcase which high level components are involved, and the intricate details are not readable or

important. Zoomable, pdf versions of all seven architectures can be downloaded from this link.

C.1 Seq

The Seq architecture, shown in Figure 28, takes only the sequence as input, and only scans for

transcription factor motifs in this sequence.

. T o

2123 03 [s123] 03 | 03
n e

)

Pooled Feature Map
1072

/S |

-

A
e

P
o]
= Feature Map

DNA Input

400>
8
&
)

AA

Example: SPI1 Motif 1
Matrix Profile: MA008O.1
(1,072 motifs in total)

Figure 28: An illustration of the Seq architecture.

97

https://github.com/Cameron7195/IBBME_TR300M_Project/tree/main/model/COLAB%20TESTS%20(presented%20in%20report)/Architecture_pdfs

C.2 Seq + TF

The Seq + TF architecture, shown in Figure 29, takes the sequence and transcription factor levels

as input, and only scans for transcription factor motifs in the sequence.

-0 o0»

Pooled Feature Map

1072

ERERED

Yoss |05 | 0sa

ERE
053 /653 |- | 1072

428| 0 95 0 b
102 o s o o fo || x
[Falo o 4o

TF Levels
Input

| Feature Map

06|28 8 a8 28 0%
o218 1 2 a8 13
22 22 28 2 38 28

| oA

Example: SPI1 Motif 1
Matrix Profile: MA008O. 1
(1,072 motifs in total)

2
&

i
om s 22 an a0 (22| Mol]

oo
(K
Il
(K

HDNA Input

Figure 29: An illustration of the Seq + TF architecture.

98

C.3 Seq + TF + DF

The Seq + TF + DF architecture, shown in Figure 30, takes the sequence and transcription factor
levels as input, and only scans for transcription factor motifs in the sequence. This architecture

also applies a distance factor to the transcription factor levels.

- W

o

053 | 053

15
a2

x

053 [Gsa | |1
7642|7602 7542 | 7042

] o om0 [o] ™ [malms]me[ms mx
1072

:uu;/‘/u

Pooled Feature Map

|
|

i

“ 1,072}

|

Distance, TF Levels
— . / Factor \ Input
o [oof20l20[0g / \

+ W || 1072 w>0, wainable parameter

oo o o ool 1900 o][DNAInput J

v [0 v ofo]o oo o]0 0 o2

o EEEEERIE R

Lofo o olo]o y—% oo i]o s — —
o 13 22 (20 (20 (22 Mot/ T 5

400>

22|22 28 2 a8 28

e om0 moan ot
2|18 19 w 13] S o « oz 1072

Example: SPI1 Motif 1 T exp(-r x
Matrix Profile: MA008O. 1 — ““ !
(1,072 motifs in total) :

- ~— H
7 i
g o = s = \
= [[[
1wn 0w | 1072) ro0.tanaveprameter
E
:
/

Chromosome B /. /
Location of Gene TF Chromosome -
that Model is Location 140,000
Predicting warises || 1072
oz
_— N
40,928,195 o 39,069,295
o2 | s || - s || |vone
sz wosmaa
- !
TF Transcriptional
40,928,195 Start Site Location
Transcriptional

Start Site Location of
Gene that Model is
Predicting

Figure 30: An illustration of the Seq + TF + DF architecture.

99

-0 0>

C.4 Seq + TF + Core

The Seq + TF + Core architecture, shown in Figure 31, takes the sequence and transcription factor

levels as input, and scans for both core promoter elements and transcription factor motifs in the

sequence.

128

P e VA _— ™ o
| o [ose)] o S (303 s [ma [,
1oz)/ [0 om0 [0 70]| x [4ss]oss om[osofBss]| | 1072
[l [0 @ o1 [P oz 7esz [pda
; < [f
/ / W\ ;

Pooled Feature Map J
/

/ . -
o (o o (oo (1 (s o [0 "o (|DNAInput
—) 070 1 o oo o [s
s o RN e
- o g 0 o oo o [ofo o 1] o
~ roa ”
A 260 180 502 188 14 | 153 Motif i
: 1.08 306 -3.28 -306 306 -498 o
TFLevels © Iy
_ ot @ |28 50 50 4m w5 m]|
SRR . T e e te e om s
oss 0 o o o} Example: TATA-Box
o[e o i . Matrix Profile: POLO12.1
ololo oS o]0 . T Lo (13maiis intoia)
o[ofo o001 s [0 o |DNAIput
o7 v oo lo o el s
o el el
Ao o oo o [ofolo ilole
ol 2 2 a0 [az]| Mot
056 28 28 -38 -28 -0.34 7z
7

oa2 18 19 28 2 13 &
22 22 28 2 98 28

| GAA

Example: SPI1 Motif 1
Matrix Profile: MA00B0.1
(1,072 motifs in total)

Figure 31: An illustration of the Seq + TF + Core architecture.

100

C.5 Seq + TF + Core + HM

The Seq + TF + Core + HM architecture, shown in Figure 32, takes the sequence, transcription

elements and

factor levels, and histone modifications as input, and scans for both core promoter

transcription factor motifs in the sequence.

| _ [l fnafaafas]] - [=
N ~ 7 /
- N
_ - |

/o
. yavas |

— ,/ / |
/ 7 -, | |

- . [782[4es[505122 450 (128419
// [o1 [o1 [o1 [o1 o1 o1 o1] =
e i rm——

oy = >
Y ERCIRa (Il CaEREnEnD e R
o2 o [am 0 [0 o] x [pmom|om|ossfiss | | 1072 2l i L
walo o o e a2 a2 e oz D Y C R A AR EXIE
-

S o [0 o [0 70] } - i
EIEOD s .
\ oo o o] o / . /
7 -
oo o v 1[0 oo DNAInput o1 [or [ar [oa [or
| "o oo oo o o]0 o| [0z 02| 0a]0a]a
KRR HEEEEE wuz ooz [o [0 [0 |/
oo o ofolo 100
108 305 328 08 08 458 ’
TFlevels C | 4
ot G265 s 50 4 %8 sa 7
T e e e o3 e
o
Example: TATA-Box oz
- Matrix Profile: POL012.1
A (13 motifs in total)
J— e |l

o [0l o/ olofo 1 1900 o] DNAInput
" 00 1 o oo oo o]0 e
o To 1 1o (A ERE
Ao [0 o lo|o[ofo|o]1]e]o
A 0 18 22 20 20 22 Motif ;7
C fom 20 m s om 0w
G 04218 19 |8 | 2 13) @«
2222 28 = a8 28 el
T ‘ Cell Type Input

Example: SPI1 Motif 1
Meatrix Profile: MAC080.1
(1,072 motifs in total)

Figure 32: An illustration of the Seq + TF + Core + HM architecture.

101

C.6 Seq + Core + HM

The Seq 4+ Core + HM architecture, shown in Figure 33, takes the sequence and histone modifi-
cations as input, and scans for both core promoter elements and transcription factor motifs in the

sequence.

! _ 7] I
o /]
Z _ /)
- /o
- /)
/
y

|
|
[

o yd

b . L

782443305 (122 458128 [410
v |

[o1 To1Toa Toa Toa [or o |
P i o 2
- (e[amal o vzl malaa] o1 [o1 o1 [o1 [o1
= \ 202 |03 03|08

g 7|\ FeawreMap 2

f o o0z o | 0 | o

S o [0 o [0 70] / : i
/ /

oo lo[ofo o / : /

/
s fo o 1 1[o]0 o]0 DNAInput o o [or [or [
- "o o (o [0 o [0 o]0 5| oz oz | 0a [as]0s
e EEERE ooz om| 0 [0 0]/ .
) o |0 o [of oo ilo]o
(180 {140 100 ([Motit /
7 /
208 305 498 2
42 <0 a2t ;
160 032 998
G
Examplo: TATA-Box o
. Matrix Profile: POL012.1
A (13 motifs in total)
_ L A i

nuun‘n‘n‘wnnnnDNAlnpul
o7 oo o oo oo o
Ao o oo o lilolo

00818 22 20 20 |22 [Motif

A
C [ose|2s 2 a8 2 am) 7
G foelis 10w & s &
22 22 28 s o8 28 4
T Cell Type Input

G

Example: SPI1 Motif 1
Meatrix Profile: MAC080.1
(1,072 motifs in total)

Figure 33: An illustration of the Seq + Core + HM architecture.

102

C.7 Seq + TF + HM

The Seq + TF + HM architecture, shown in Figure 34, takes the sequence, transcription factor

levels, and histone modifications as input, and only scans for transcription factor motifs in the

sequence.

- foufwsfaafuafal) - |
v 7 7 T 1 |
_ - | | |

7
/)
/ [

- / | |

/ |
N | | f
-) S

- 7. tatatatatag- |

/ ~ ‘\\
- — ~
IRl CAERETERES DG
o2 o[o [0 Fo|| x [pe]om|om]omlBa]|~ |1om CECRCRCE O

o s 7o oz e oz °

i Nv“ \ 0 0 08 | 08 | 08

ooz ooz [0 [0 [0

b
N

TF Levels

Input
o [0l o oofol 1 1[ofoolo]DNAInput
T o701 oo o oo oo o
. AR IR
Aol o o fofo[ofo]o]rol0
A fomfa 22 (a0 (oo [z [Mot/
G o s m s moos
G 04218 19 |8 | 2 13) @«
22 22 20 @ a8 2n =
! ‘ ! Cell Type Input

Example: SPI1 Motif 1
Meatrix Profile: MAC080.1
(1,072 motifs in total)

Figure 34: An illustration of the Seq + TF 4+ HM architecture.

103

D Training and Plots

In this Appendix, plots are presented from training and inference for the seven model architectures
defined in Appendix C. In the top left of Figures 35-41, a plot is presented of the true vs predicted
expression values on the validation set. The y coordinate of each point on these scatter plots rep-
resents the median of the output distribution, and the x coordinate represents the corresponding
true expression level. The values are log transformed for easier viewing. In the top right of Fig-
ures 35-41, the training and validation loss is plotted over 100,000 training steps. In the bottom left
of Figures 35-41, the training and validation, pearson and log pearson correlations are plotted over
100,000 training steps. Finally, in Figures 35-41, the training and validation accuracy is plotted

over 100,000 training steps.

104

D.1 Seq

Correlation

True vs predicted

o 1 2 3 4
True expression level (Log transformed TPM)

Predicted expression level (Log transformed TPM)

Pearson correlation over training

0.6 4

05 4

04 4

0.3 4

0.2

01 4

0.0 4

= Pearsonr

val Pearson r
—— log transformed Pearson r
—— val log transformed Pearsonr

J—

Training steps (x10%)

Loss

Accuracy

Loss over training

55 1

5.0 1

4.5 1

4.0 4

35 1

3.0

25 1

2.0 1

__——-“‘\ — frain

validation

4 g
Training steps (x10%)

P

Accuracy over training

0725 1

0700 4

0675 1

0.650 4

0625 1

0,600 1

0575 +

0.550

—— frain
validation

Training steps (x10%)

Figure 35: Training and inference plots for the Seq architecture.

105

D.2 Seq + TF

0.7 A

0.6

05

Correlation

True vs predicted

0 1 2 3 4
Tue expression level {Log transformed TPM)

Predicted expression level {Log transformed TPM)

Pearson correlation over training

= Pearsonr

val Pearson r
—— log transformed Pearson r
—— val log transformed Pearsonr

 —

Training steps (x10%)

Figure 36: Training and inference plots for the Seq + TF architecture.

106

Lo

2 375

Loss owver training

450 4

— ftrain
validation

425 1 ——

400 4

3.50 1

3.25 1

3.00 1

T T T
1] 2 4 &
Training steps (x10%)

Accuracy over training

080

= frain
validation

0.75 4

0.60

[=]
P A
F=Y
L=l

Training steps (x10%)

D.3 Seq + TF + DF

True vs predicted

i} 1 2 3 4
Tue expression level (Log transformed TPM)

Predicted expression level (Log transformed TPM)

Pearson correlation over training

06 4 —— Ppearson r
val Pearson r
05 1 —— log transformed Pearson r
—— val log transformed Pearsonr
0.4 4
=
=
k]
w 03
g
0.2 1
0.1
004
T

Training steps (x10%)

Loss

Accuracy

Loss over training

5.5 1

5.0 1

4.5 1

4.0 1

35

3.0 1

25

2.0 1

— ftrain

/ walidation

Training steps (x10%)

Accuracy over training

0.725 1

0.700 1

0675 1

0650 1

0.625 4

0600 4

0.575

0550 1

—— frain
validation

o

4 B
Training steps (x10%)

Figure 37: Training and inference plots for the Seq + TF + DF architecture.

107

D.4 Seq + TF + Core

= True vs predicted
=

b=

l]-l

E 41

=

i

5

o 31

3

w

B2

5

€1

b

=

&z

S o -

- ; . . :
&] 1 2 3 4

Tue expression level (Log transformed TPM)

Pearson correlation over training

06 1 — Pearsonr
val Pearson r
osd — log transformed Pearson r
—— val log transformed Pearsonr

= 04+
=
b=}
)
w03
g

0z A

01 A

004

T

Training steps (x10%)

Loss

Accuracy

Loss over training

— ftrain
validation

_/
_— /

0750

-

4 g
Training steps (x10%)

Accuracy over training

0.725 1

0700

0675 4

0.650 1

0625

0600

0575

0550 4

—— frain
validation

Training steps (x10%)

o

Figure 38: Training and inference plots for the Seq + TF + Core architecture.

108

D.5 Seq + TF + Core + HM

True vs predicted

Loss over training

472 4
— ftrain

41 40 4 ~ validation

igeq ~

Loss

3.4

30 1

2.8 1

T
o 2 4 & B

T T T T T Training steps (x10%)
] 1 2 3 4

True expression level (Log transformed TPM)

Predicted expression level (Log transformed TPM)
1

Pearson correlation over training Accuracy over training

o7 | — Pearsenr "‘______——-———" 08251 __ wain
- val Pearson r 1800 walidation
—— log transformed Pearson r i

0.6 4
—— val log transformed Pearson r 0775 A

05 4 0.750

0,725 +

Correlation
Accuracy

0.700 1
0.675 1

0.650 1

0625 1

T
0 2 4 6 8 0 2 4 &
Training steps (x10%) Training steps (x10%)

Figure 39: Training and inference plots for the Seq + TF + Core + HM architecture.

109

D.6

Seq + Core + HM

True vs predicted

4
True expression level (Log transformed TPM)

Predicted expression level (Log transformed TPM)

Pearson correlation over training

Correlation

01 4

0.0 4

—— Pearsonr
val Pearsonr

-

| = log transformed Pearson r

—— val log transformed Pearsonr

T T T
o 2 4 6
Training steps (x10%)

o -

Loss

Accuracy

Loss over training

44 A

4.2 1

4.0 1

3.8

36 1

3.4

3.2

3.0

28 1

— ftrain
validation

=]
[

4

&

Training steps (x10%)

Accuracy over training

oo -

0.825 A

0.800 1

0,775 |

0750 +

0725 1

0700 1

0675 1

0650 1

0625

—— frain
validation

4

&

Training steps (x10%)

Figure 40: Training and inference plots for the Seq + Core + HM architecture.

110

D.7 Seq + TF + HM

True vs predicted

o 1 2 3 4
True expression level (Log transformed TPM)

Predicted expression level (Log transformed TPM)

Pearson correlation over training

= Pearsonr
0.6 1 val Pearson r /
—— log transformed Pearson r
057 — val log transformed Pearsonr
5 0.4 4
=]
o
SER
g
0.2 4
0.1 1

Training steps (x10%)

Loss

Accuracy

Loss over training

36 1

34 1

3.2

3.0 1

2.8 1

26 1

2.4 1

— ftrain
validation

P

4 B
Training steps (x10%)

Accuracy over training

0.74 4

0.72 1

0.70 4

0.68 4

0.66 4

064 4

0.62 4

— frain
validation

P A

4 &
Training steps (x10%)

Figure 41: Training and inference plots for the Seq + TF + HM architecture.

111

E Data Preprocessing Pipeline

This section outlines the data processing pipeline used to generate the numpy arrays from which
examples are generated in Appendix A. The following figures— 42, 43, and 44—should be examined
alongside the python files made available in section 11, if one wishes to understand how to generate

the dataset from scratch.

E.1 Gene-Related Data

GENCODE v26 Release
https:/iwww.ger 1es.0rg/
humanirelease_£6.html

Broad Institute Histone Tracks
hitps /fwww.nature.com/
articles/nrg2905

U of T BME MySQL Server
apel.ibbme.utoronto.ca

Comprehensive Gene

Annotation
hgaB.p10
Promoter start&end (1ss-2773 —> local
ts5+50) for each transcript id. * getSeqFunction ¢ F"'""?Q":a"fﬁ:”"me

. —

EncodecCRECombined Table
(" from hg38.encederccrecombined)

—

promoterDataDict containing:
key: chrom_tssPos_promoterEndPos
val: [list of transcript ids, one-hot ACGT sequence, cCRE score, tss, chr)

l

Create file with
19786 lines, each line contains dict with:
‘i chr_tss_promEnd, 'tx_ids" list of tx ids, 'acgtOneHot" numeric
promoter sequence, 'creSeq”: cCRE score sequence, 'tss': tss
location on chromosome, 'chr': one-hot encading of chromosome

Save in
promoterData_gene.jsonl.gz

| ! !

l i [] sourcefie

Store histone sequences E;:ﬂzsgl;gr:;: sa?:;m CC;:Ed :l.:: - Extract 1ss and store in Extract chr and store in |:| data_getpy
in numpy array. in numpy array. mucmas ay. numpy array. numpy array.)
b b dala_expression_get,
(19786, 2823, 3, 7) (19786, 2623, 4) (19786, 2823, 1) (19788, (19786, 24, 1) |:| _expl _get.py
data_celltype_get.py
|:| data_tilevels_get.py
r h h v
data_jaspar_get.py
hmAm.npy.gz acgiSegArr_gene.npy.gz creSeqAm_gene.npy.gz tssArr_gene.npy.gz chrAm_gene.npy.gz I:‘ data._timotifmatch_get.py
l:‘ data_reformatint.py

data_histones_get.py

Figure 42: The pipeline to gather and process data from source to final array for gene-related

data.

112

E.2 Sample-Related Data

The Human Transcription Factors
Lambert et. al.
hitps:/www.sciencedirect.com/
science/article/pli’S0092867418301065

GTEx Portal
gtexportal.org/ome/datasets

Excel List of known or
potential human
transeription factors &

GENCODE v26 Release
https:/fwww.gencodegenes.org/
human/release_26.himl

|

CO-repressors

|

GTEx Sample
GTE_)r(ageer}?ﬂ;F]P GE Comprehensive Gene A d Aftribute Table (to
Annotati b fi
(.gct document) LI 2] List of cell types from: o 5;5,.;::1%[;5 by
w https:/gtexportal.org/
home/samplingSitePage
el Python list of TFCR
TFExpressNames.txt «— A l
(2573 GENCODE ids)| | GENCODE Gene ds l
Onehot encode and save in List of sample
l cellTypeEncoding json ids
Dict with: l L i
key: Sample_id v r hd
val: ordered array of Dict mapping
TECR TPMs n r key: Sample_id
Array containing tss Array containing)
location for each chromosome location walicelllypeioneihotencoded
l TFCR for each TFCR ¢
eveln Save in
sampleToTFExpress.json
2 MG sampleToCelType.json l:‘
Extract and store in Extract and store in I:‘
numpy array. numpy array.
(17382, 2753, 1) (17382, 54, 1) |:|
WExpressAm.npy.gz tTssAm.npy.gz HChrAm.npy.gz cellTypeAmr.npy.gz I:I

source file

data_get.py
data_expression_get.py
data_celitype_get.py
data_tflevels_get.py
data_jaspar_get.py
data_tfmotifmatch_get.py
data_reformatint.py

completed by hand

Figure 43: The pipeline to gather and process data from source to final array for all sample-

related data.

113

E.3 JASPAR and Expression data

Jaspar python library
from pyjaspar import jaspardb

13 motifs relevant for 1072 TF position
the binding of RNA fregquency matrices in
Polymerase Il data_jaspar_get.py
POLII Kernels
(13,19, 4)

POLIIKernels.npy.gz

1072 TF motif names

PSSM Kemels
(1072, 35, 4)

PSSMKernels.npy.gz

GTEx Portal
glexportal orgihome/datasets

‘GENCODE w26 Release
htips:/www.gencodegenes.org/
human/release_26.html

\Comprehensive Gene|

promoterData jsonl.gz

Annatati
nnetaton GTEX Gene TPMs Table (V8)
{.gct document, basically TSV)
56200 genes x 17382 samples
TFExpressNames.txt
(2573 GENCODE ids)
18786x17382 malrix
2573 x 1072 matrix 1072x1 array with a 1 [i,]] = expression for line i of promoterData in
matching TFs to their anywhere a motif has sample . The expression value for lines with
respective motifs na match multiple transcripts is the SUM of each of those
transcripts.
[fMotifMatchArr.npy.gz tiBiasArray.npy.gz expressionArr_gene.npy.gz

EO0COC0Obd

Figure 44: The pipeline to gather and process data from source to final array for
data and JASPAR binding motifs.

114

source file

data_get.py
data_expression_get.py
data_celltype_get.py
data_{flevels_get.py
data_jaspar_get.py
data_tfmotifmatch_get.py
data_reformatint.py

completed by hand

expression

This page is intentionally left blank.

115

	Introduction
	Background
	Where do proteins come from?
	Transcription
	Structure and Direction of DNA
	Regions of the DNA

	Regulatory Mechanisms
	Core Promoter Elements
	Transcription Factors
	Histone Modifications
	Other Mechanisms

	Aims
	Theory
	Structure
	Uncertainty
	Model Inputs
	DNA Sequence
	Transcription Factor Levels
	Histone Modifications
	Conclusion

	Literature Review
	History
	Breakdown of Approaches
	The Cybernetic Paradigm
	The Mechanistic Paradigm

	Cybernetic Models
	Information-Theory Models
	Boolean Networks
	Bayesian Networks

	Mechanistic Models
	From Sequence Data
	Other Inputs

	Integrating Both Paradigms
	Conclusion

	Methods
	Data
	Level of Transcription
	DNA Sequence
	Transcription Factor Levels
	GENCODE Annotations
	Same Inputs as Outputs?
	Histone Modifications
	Binding Motifs

	Parametrization
	Output Distribution
	Machine Learning
	Example Generation
	Dataset Splits
	Loss Metric
	Neural Networks
	Convolutional Layer
	Multiplication Layer
	Distance Factor
	Pooling Schedule

	Computational Block
	Overall Architecture
	Software Tools
	Python
	Tensorflow
	NumPy, SciPy, and Matplotlib
	Google Colab
	Google Cloud Compute

	Metrics of Performance
	Negative Log Likelihood
	Pearson Correlation
	Log Pearson Correlation
	Spearman Rank Correlation
	Log R2
	Accuracy

	Results
	Discussion
	Seq vs. Seq + TF
	Seq + TF vs. Seq + TF + DF
	Seq + TF vs. Seq + TF + Core
	Seq + TF + Core vs. Seq + TF + Core + HM
	Seq + Core + HM vs. Seq + Core + TF + HM

	Next Steps
	Data Availability
	Code Availability
	Example Generation
	Convolutional Motif Detection Test
	Architectures Tested
	Seq
	Seq + TF
	Seq + TF + DF
	Seq + TF + Core
	Seq + TF + Core + HM
	Seq + Core + HM
	Seq + TF + HM

	Training and Plots
	Seq
	Seq + TF
	Seq + TF + DF
	Seq + TF + Core
	Seq + TF + Core + HM
	Seq + Core + HM
	Seq + TF + HM

	Data Preprocessing Pipeline
	Gene-Related Data
	Sample-Related Data
	JASPAR and Expression data

